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1 Objective Bayesian inductive logic
Inductive entailment relationship (Haenni et al., 2011):

φX11 , . . . , φXkk |≈ ψ
Y .

where

φ1, . . . , φk, ψ are sentences of a logical language L

X1, . . . , Xk, Y are probabilities or sets of probabilities.

Objective Bayesian inductive logic:

φX11 , . . . , φXkk |≈
◦ ψY

iff P†(ψ) ∈ Y for every probability function P†, from all those that satisfy the premisses, that
has maximal entropy.

Suppose L is a propositional language with atomic sentences 1, . . . , n:

Ωn
df
= {±1 ∧ · · ·∧ ±n}.

Hn(P)
df
= −

∑

ω∈Ω P(ω) logP(ω).

Find the function P†, from those that satisfy φX11 , . . . , φXkk , with maximum entropy.





Answer the following question:

g→ h, h∧ ∧¬g1/16 |≈◦ g?

Think of the total probability as contained in a jug and to be distributed evenly amongst
people at a table, who represent possible outcomes, given constraints:

hg h¬g h¬g h¬¬g ¬hg ¬h¬g ¬h¬g ¬h¬¬g

First constraint: g→ h

0 0
hg h¬g h¬g h¬¬g ¬hg ¬h¬g ¬h¬g ¬h¬¬g



Second constraint: P(h¬g) = 1/16

1/16 0 0
hg h¬g h¬g h¬¬g ¬hg ¬h¬g ¬h¬g ¬h¬¬g

Then share evenly:

3/16 1/16 3/16 3/16 0 3/16 0 3/16
hg h¬g h¬g h¬¬g ¬hg ¬h¬g ¬h¬g ¬h¬¬g



A truth table can be used instead:

P h  g g→ h h∧ ∧¬g g
3/16 T T T T F T
1/16 T T F T T F
3/16 T F T T F T
3/16 T F F T F F

0 F T T F F T
3/16 F T F T F F

0 F F T F F T
3/16 F F F T F F

P(g) = P(hg) + P(h¬g) + P(¬hg) + P(¬h¬g)
= 3/16 + 3/16 + 0 + 0
= 6/16
= 3/8

So
g→ h, h∧ ∧¬g1/16 |≈◦ g3/8.



What if L is a first-order predicate language?

Finitely many relation symbols U1, . . . , U,

Countably many constant symbols t1, t2, . . .

Atomic sentences 1, 2, . . . ordered such that those involving only t1, . . . , tn occur be-
fore those involving tn+1, for each n,

Finite sublanguages Ln involve only t1, . . . , tn.

Ωn
df
= {±1 ∧ · · ·∧ ±rn}, the states of Ln.

E
df
= {P ∈ P : P(φ1) ∈ X1, . . . , P(φk) ∈ Xk}.

mxentE is the set of functions in E that are not dominated in entropy:

mxentE
df
= {P ∈ E : there is no Q ∈ E, N ∈ N such that Hn(Q) > Hn(P) for n≥N}.





But how do we find these maximal entropy probability functions?



2 Entropy limit points
In certain circumstances mxentE is a limit of n-entropy maximisers.

Suppose X1, . . . , Xk are convex and the premisses are satisfiable.

Consider:
Hn = {P ∈ E : Hn(P) is maximised }.

P ∈ P is an entropy limit point of E if for each n there is some Qn ∈ Hn such that
|Hn(Qn) − Hn(P)| −→ 0 as n −→∞.

This property enables us to characterise mxentE more constructively:

Theorem 1. If E contains an entropy limit point P then

mxentE = {P}.

Note that there can be at most one entropy limit point P.



Example 2. Suppose we have a single premiss ∀Uc where L has a single unary predicate
U. The following probability function is an entropy limit point:

P(ωn) =
�

c + 1−c
2n : ωn = Ut1 ∧ · · ·∧ Utn
1−c
2n : ωn |= ¬(Ut1 ∧ · · ·∧ Utn)

.

P ∈ E because P(∀U) = limn→∞ P(θn) = c. Hence by Theorem 1, mxentE = {P}.

Example 3. Consider a single categorical premiss U1t1∨∃∀yU2y. In this case Hn = {P=}
for all n. Thus the equivocator function is the unique entropy limit point of E. However, the
equivocator function is not in E, so it cannot be the maximal entropy function.





3 Conditionalisation and entropy limit points
Special case:

The premisses are categorical sentences φ1, . . . φk of L.

Let φ abbreviate φ1 ∧ · · ·∧ φk.

We will consider E = Eφ
df
= {P ∈ P : P(φ) = 1}.

Corollary 4. If P=(·|φ) is an entropy limit point of Eφ then

mxentEφ = {P=(·|φ)}.

Corollary 5. If Hn contains P=(·|φ) for sufficiently large n then

mxentEφ = {P=(·|φ)}.

Example 6. Suppose we have a single categorical premiss ∃U, where L has a single unary
predicate symbol U. P=(∃U) = 1, so P=(·|∃U) = P=(·). P= ∈ H1,H2, . . ., so Corollary 5
applies and mxentEφ = {P=}.





4 An alternative route to conditionalisation
This section demonstrates agreement between the maximal entropy approach and condi-
tionalisation without appeal to entropy limit points.

Again we consider categorical sentences φ1, . . . , φk and abbreviate φ1 ∧ · · ·∧ φk by φ.

Let sentence φn be the disjunction of those n-states ω such that φ∧ω has positive measure:

φn
df
=
∨

{ω ∈ Ωn : P=(ω∧ φ) > 0}.

Let N be the greatest index of constants appearing in φ.

Theorem 7 (Agreement with Conditionalisation). For all φ ∈ SL with P=(φ) ∈ (0,1] and all
n ≥ N it holds that

mxentEφ = {P=(·|φ)} = {P=(·|φn)} = {P=(·|φN)} .

Example 8. For the premiss sentence φ = (∃∀yUy ∧ Ut1t1) ∨ (∀∃y¬Uy ∧ ¬Ut1t1) it
holds that

mxentE = {P=(·|¬Ut1t1)} .





5 Jeffrey Conditionalisation
Consider the premiss φc for P=(φ), c ∈ (0,1).

Theorem 9 (Jeffrey Conditionalisation). For all c ∈ (0,1) and all φ ∈ SL such that P=(φ) ∈
(0,1), the maximal entropy function is obtained by Jeffrey Conditionalisation with respect to
the equivocator function:

mxentE = {P†}

where

P†(·) = c · P=(·|φN) + (1 − c) · P=(·|¬φN) .





6 Preservation

Theorem 10 (Preservation). If |≈◦ θ and 6|≈◦ ¬φ, then φc |≈◦ θ for any c ∈ (0,1].

Related to:

Obstinacy (Paris, 1994, p. 99)

Rational Monotonicity (Lehmann and Magidor, 1992, §3.4)

Absolute Continuity





7 Conclusion
The concept of an entropy limit point can help with the general problem of determining
maximal entropy functions.

If premisses have positive measure, maxent agrees with Bayesian Conditionalisation.

This extends to Jeffrey Conditionalisation.

Open questions:

How do we determine maxent when φ has zero measure?

In some cases we can appeal to entropy limit points.

EG ∀Uc

In some cases, there is no maximal entropy function.

EG ∃∀YUy, or ∀∃y∀zSyz

Does maxent depend on the order of the constants?

(The greater entropy relation is relative to a specific ordering.)



Thanks to Alena Vencovska, Jeff Paris, Leverhulme Trust, DFG.
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