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Basics

L - predicate language (without equality, no function
symbols) with constant symbols a1, a2, a3 . . . and
finitely many predicate (relation) symbols. SL is the
set of sentences of L.

A state description for constants a1, . . . , an is a
sentence Θ(a1, . . . , an) that decides all atomic
sentences involving these constants. Replacing
constants by variables yields a state formula.

If r is the maximum arity of the language then state
formulae for r variables are called atoms. If clear
from context, ‘atoms’ can also refer to state
descriptions for r constants.
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Exchangeability

Exchangeability (possible formulation). A probability
function w : SL→ [0, 1] satisfies Exchangeability, Ex
if for any state description Θ(a1, . . . , an),
w(Θ(a1, . . . , an)) is invariant under permutations of
constants.

In the unary case, Ex can be expressed in terms of
signatures of state descriptions.
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Unary Case

For L = {R1, . . . ,Rq}, all unary, atoms are:

q∧
i=1

±Ri(x),

where ±R is one of R , ¬R . We denote them
α1(x), . . . , α2q(x).

State descriptions are sentences of the form

αi1(a1) ∧ . . . ∧ αin(an). (1)

Ex says that the probability of (1) depends only on
its signature 〈n1, . . . , n2q〉 where nj is the number of
times that αj appears amongst the αi1 , . . . , αin .

Alena Vencovská Binary Pure Inductive logic



L = {R}, R binary

We now restrict ourselves to L = {R}, R binary.

A state description for a1, a2, . . . , an is a sentence of
the form

n∧
i ,j=1

±R(ai , aj).

We usually represent this by an n × n {0, 1}-matrix
with 1 or 0 at the ith row, jth column depending on
whether R(ai , aj) or ¬R(ai , aj) appears in the state
description respectively.
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Example

¬R(a1, a1)∧R(a1, a2)∧R(a1, a3)∧R(a2, a1)∧R(a2, a2)

∧R(a2, a3) ∧ R(a3, a1) ∧ ¬R(a3, a2) ∧ R(a3, a3) 0 1 1
1 1 1
1 0 1



Atoms are represented by 2× 2 {0, 1}-matrices
(there are 16 of them).
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Example continued

State descriptions are composed of atoms. For
example,

Ψ(a1, a2, a3) : γ (a1, a2) ∧ γ (a1, a3) ∧ η (a2, a3)(
0 1 1
1 1 1
1 0 1

) (
0 1 1
1 1 1
1 0 1

) (
0 1 1
1 1 1
1 0 1

) (
0 1 1
1 1 1
1 0 1

)

The binary signature of a state description should in
some sense be the vector of numbers of atoms that
it is composed of.

It needs to be invariant under permutation of
constants.
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Example continued

If Φ(a1, a2, a3) = Ψ(a2, a1, a3) then we have

Φ(a1, a2, a3) : γ̄ (a1, a2) ∧ η (a1, a3) ∧ γ (a2, a3)(
1 1 1
1 0 1
0 1 1

) (
1 1 1
1 0 1
0 1 1

) (
1 1 1
1 0 1
0 1 1

) (
1 1 1
1 0 1
0 1 1

)

For signatures of state descriptions to be invariant
under permutations of constants, ‘permuted’ atoms
need to be counted together.
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Binary Signature, L = {R}

Ten classes of atoms, for example{(
0 1
1 1

)
,
(

1 1
1 0

)} {(
1 1
0 1

)
,
(

1 0
1 1

)}
{(

1 1
1 1

)} {(
1 0
0 1

)}
. . .

We denote them Γ1, Γ2, . . . Γ10.

For L = {R}, the signature of a state description
Θ(a1, . . . , an) is the vector 〈n1, . . . , n10〉 where ng is
the number of pairs 〈ai , aj〉 with i < j such that Θ
restricted to ai , aj is in Γg .
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Binary Exchangeability

Signature for any other L with at most binary
predicates is defined analogously.

Binary Exchangeability, BEx. Probability of a state
description depends only on its signature.

BEx ⇒ Ex but not conversely.
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Cannonical functions w ~Y satisfying BEx

For L = {R}, with ~Y = 〈x1, x2; y1, . . . , y10〉, give a
state description represented by a matrix the
probability with which we obtain this matrix when
placing 0 or 1 on the diagonal with probability x1, x2

respectively and then complete it according to
probabilities yg .

Hence we need xi , yg ∈ [0, 1], x1 + x2 = 1 and for
each ordered pair 〈k , c〉 with k , c ∈ {0, 1} the sum
of those yg for g such that Γg contains one or two
atoms extending (

k
c

)
is 1 (the yg with 2 such atoms are counted twice).
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Explicit formula for the w ~Y

DL is the set of ~Y as above. For ~Y ∈ DL,

w~Y (Θ(a1, . . . , an)) = xm1
1 xm2

2

10∏
g=1

yng
g

where m1,m2 is the number of times 0, 1 appears on
the diagonal of the matrix representing Θ
respectively and 〈n1, . . . , n10〉 is the signature of Θ.

The w~Y extend to probability functions on SL.

For other languages with at most binary predicates
the signature, DL and the w~Y are defined
analogously.
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de Finetti style representation theorem for BEx

Theorem. Let L contain at most binary predicates
and let w be a probability satisfying BEx. Then
there exists a (normalised, σ-additive) measure µ on
the Borel subsets of DL such that for any θ ∈ SL,

w(θ) =

∫
DL

w~Y (θ)dµ( ~Y ) (2)

Conversely, for a given measure µ on the Borel
subsets of DL, the function defined by (2) is a
probability function on SL satisfying BEx.
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Applications

This representation allows us to prove various results
on conditioning for the BEx functions, similar to
those leading to the Conditionalization theorem for
the unary probability functions satisfying Ex. They
apply to languages with binary predicates (any
number) and possibly some unary predicates.

We say that ~Y ∈ DL is extreme if all xi , yg are 0 or
1.

We say that ~B ∈ DL is a support point of µ if every
open neighborhood of ~B has measure > 0. The set
of support points of µ is its support set.
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Results

Let w be a probability function satisfying BEx with
de Finetti prior µ and let ~B1, ~B2, . . . , ~Bk be distinct
non-extreme support points of µ. Let
γ1, γ2, . . . , γk > 0,

∑k
j=1 γj = 1 and let

v =
∑k

j=1 γjw ~Bj
. Then there exist quantifier-free

sentences ξn(a1, . . . , atn) such that for any
quantifier-free sentence ψ(a1, . . . , am),

lim
n→∞

w (ψ(atn+1, . . . , atn+m) | ξn(a1, . . . , atn))

= v(ψ(a1, . . . , am)).
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Results

Let w be a probability function on SL satisfying
BEx, with de Finetti prior µ and let ε > 0. Then
there are points ~D1, . . . , ~Dk in the support of µ, and
γj > 0 with

∑
j γj = 1 such that for v =

∑
j γjw~Dj

,

|w(ψ(a1, . . . , am))−v(ψ(a1, . . . , am))| < m3|SD(m)|ε

for all quantifier-free sentences ψ(a1, . . . , am).

(SD(m) is the number of state descriptions of L for m
constants).
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Results

Let w1 be probability a function satisfying BEx such
that the support set of its de Finneti prior is DL.
Then for any w2 satisfying BEx and for a given m
and ν > 0, there is a quantifier-free θ(a1, . . . , an)
such that for each quantifier-free ψ(a1, . . . , am),

|w1(ψ(an+1, . . . , an+m) | θ(a1, . . . , an))

− w2(ψ(a1, . . . , am))| < ν.

Informally, within some prescribed accuracy and
restricting ourselves to quantifier-free sentences
involving only a limited number of constants,
provided that the support set of the prior of w1 is
DL, we can obtain from it by conditioning any other
w2 satisfying BEx.
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