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Diaconis and Zabell (1982)

Let (
,B) be a credal space. Let P be a prior and P 0 a posterior
probability assignment.

P 0 comes from P by conditionalization if there exists a
probability space (�,A,Q) such that
� for each ! 2 
 there is an E! 2 A and P (!) = Q(E!);
� there is an E 2 A such that Q(E) > 0 and P 0(!) = Q(E! | E).

Theorem. P 0 comes from P by conditionalization if and only if there
exists a B � 1 such that

P
0(!) � BP (!)
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Takeaway

In principle, the shift from P to P 0 can be represented by
conditionalizing on E.

The conditioning proposition E is an idealization that does not
(necessarily) stand for something the agent can express.

That a superconditioning space exists is a plausible necessary
condition for the shift to be a learning event.
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Plan

I will extend the superconditioning theorem in two ways:

� A shift from a prior to a set of posteriors. This provides insights
about the reflection principle.

� A shift from a prior to two ore more distinct sets of posteriors.
This speaks to the common prior assumption and a model of
time-slice rationality.
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First extension

Consider possible shifts from a prior P to a set of posteriors
P1, : : : ,Pn.

The shift from P to P1, : : : ,Pn can be embedded in a conditioning
model if there exists a probability space (�,A,Q) such that
� for each ! 2 
 there is an E! 2 A and P (!) = Q(E!);
� there is a partition E1, : : : ,En 2 A of � such that

Pi(!) = Q(E! | Ei) if Q(Ei) > 0.
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Superconditioning

Theorem. The shift from P to P1, : : : ,Pn can be embedded in a
conditioning model if and only if there exist constants
0 � B1, : : : ,Bn � 1,

∑
iBi = 1 such that for all ! 2 
,

P (!) =
∑
i

BiPi(!).
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Reflection

That P is a weighted average of P1, : : : ,Pn is a general version of the
reflection principle.

For the usual version the prior ranges over posteriors:
� Ai = {! : Pi is the posterior at !} 2 B;
� for all i, Pi(Ai) = 1 and Pj(Ai) = 0 for j 6= i (luminosity).

In this case Bi = P (Ai) and

P (!) =
∑
i

P (Ai)Pi(!).
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Takeaway

Since the generalized reflection principle doesn’t require priors over
posteriors, it applies to (genuinely) diachronic shifts.

If we take being representable in a superconditioning space as a
necessary condition for a shift to be a learning event, then the
reflection principle is a necessary condition as well.
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Second extension

Consider two distinct shifts from a prior P to posteriors P11, : : : ,P1n
and P21, : : : ,P2m.

The shifts from P to P11, : : : ,P1n and P21, : : : ,P2m can be embedded
in a conditioning model if there exists a probability space (�,A,Q)

such that
� for each ! 2 
 there is an E! 2 A and P (!) = Q(E!);
� there is a partition E11, : : : ,E1n 2 A of � such that

P1i(!) = Q(E! | E1i) if Q(E1i) > 0;

� there is a partition E21, : : : ,E2m 2 A of � such that

P2j(!) = Q(E! | E2j) if Q(E2j) > 0.
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Superconditioning

Theorem. The shifts from P to P11, : : : ,P1n and P21, : : : ,P2m can be
embedded in a conditioning model if and only if there exist constants
0 � B11, : : : ,B1n � 1 and 0 � B21, : : : ,B2m � 1 such that∑

iB1i =
∑

j B2j = 1 and for all ! 2 
,

P (!) =
∑
i

B1iP1i(!) =
∑
j

B2jP2j(!).
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Common prior

We say that P11, : : : ,P1n and P21, : : : ,P2m have a common prior if
there is a P such that the shift from P to P11, : : : ,P1n and
P21, : : : ,P2m can be embedded in a conditioning model.

Corollary. P11, : : : ,P1n and P21, : : : ,P2m have a common prior if and
only if the intersection of their convex spans is nonempty.
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Game theory

Since the work of Harsanyi, the common prior assumption has
been important in game theory.

The result shows that for a common prior to exist the players’
posteriors must agree to some extent.
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Time-slice epistemology

According to Williamson, your current credences are not con-
strained by your past credences, but by your current evidence.
At any given time, your current credence in a proposition
should match the prior conditional probability of that propo-
sition, conditional on your current evidence. The prior prob-
ability distribution is a distinguished measure of “something
like the intrinsic plausibility of hypotheses prior to investi-
gation” [...], and your current evidence is just your current
knowledge [..]. Since knowledge is not necessarily cumulative
for rational agents, this proposal answers challenges involv-
ing rational memory loss. Since your current mental states
include your current knowledge, this proposal advances time-
slice epistemology.

Moss, Time-slice rationality and action under indeterminacy
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Final extension

P1 and P2 come from P by conditionalization if there exists a
probability space (�,A,Q) such that
� for each ! 2 
 there is an E! 2 A and P (!) = Q(E!);

� there is an E1 2 A such that Q(E1) > 0 and P1(!) = Q(E! | E1);
� there is an E2 2 A such that Q(E2) > 0 and P2(!) = Q(E! | E2).
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Superconditioning

Theorem. P1 and P2 come from P by conditionalization if and only if
there exists a B � 1 such that, for all ! 2 
,

P1(!), P2(!) � BP (!).
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Takeaway

This condition does not generate any interesting dynamic coherence
between P1 and P2:
� P1(E) = 1 and P2(E) = 0;
� P1(E) = 0 and P2(E) = 1.

In the rich framework of sets of posteriors, the two time slices cannot
be fully divorced from each other: an underlying prior exists only if
their convex spans overlap.
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Thank you!
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