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Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, today we assume data 𝑋1, 𝑋2, … are 

i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s
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Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ 0 }
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Composite 𝐻0



Standard Method: 

p-value, significance

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• A (“nonstrict/conservative”) p-value is a random 

variable (!) such that, for all 𝜃 ∈ Θ0 , 

• ...with continuous-valued data we typically use strict 

p-values, i.e. 



Standard Methodology of 

Neyman-Pearson testing

1. We fix 𝐻0 (and 𝐻1) and significance level 𝛼 (e.g. 0.05)

2. We set a sample plan

• e.g. 𝑛 = 100, or ‘stop as soon as you have seen 

three 1s in a row’

3. This determines random variable 𝑌 = X𝜏 = (X1, … , 𝑋𝜏)

• e.g. 𝜏 = 𝑛 = 100 or 𝜏 =
min{𝑛: 𝑋𝑛−2 = 𝑋𝑛−1 = 𝑋𝑛 = 1}

4. We define a p-value on 𝑌

5. We observe 𝑌. If 𝑝 < 𝛼: reject 𝑯𝟎 , otherwise accept



Motivation behind 

Neyman-Pearson Test

• The Type-I error is the probability that we reject the 

null hypothesis even though it is true. 

• False alarm; medication seems to work even 

though it doesn’t 

• By the definition of p-value, for all 𝑃 ∈ 𝐻0,

𝑃 reject = 𝑃 𝑝 < 𝛼 ≤ 𝛼

• Hence Type-I error is bounded by significance level 𝛼



Long-Run Rationale 

• We determine (before experiment!) a significance 

level  and we ‘reject’ the null hypothesis iff 𝑝 < 𝛼

• This gives a Type-I Error Probability bound 𝜶

• If we follow this decision rule consistently 

throughout our lives and set e.g. 𝜶 = 𝟎. 𝟎𝟓 , then 

in long run we reject nulls while they are correct 

at most 5% of the time

Neyman’s Inductive Behaviour Philosophy
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• We determine (before experiment!) a significance 

level  and we ‘reject’ the null hypothesis iff 𝑝 < 𝛼

• This gives a Type-I Error Probability bound 𝜶

• If we follow this decision rule consistently 

throughout our lives and set e.g. 𝜶 = 𝟎. 𝟎𝟓 , then 
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at most 5% of the time

• Strict Neyman-Pearson: do not mention p-value itself 

only decide reject or accept!



Standard Methodology of 

Neyman-Pearson testing

1. We fix 𝐻0 (and 𝐻1) and significance level 𝛼 (e.g. 0.05)

2. We set a sample plan

• e.g. 𝑛 = 100, or ‘stop as soon as you have seen 
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accept



Standard Methodology of 

Neyman-Pearson testing in practice

1. We fix 𝐻0 (and 𝐻1) and significance level 𝛼 (e.g. 0.05)

2. We set a sample plan

• e.g. 𝑛 = 100, or ‘stop as soon as you have seen 

three 1s in a row’

3. This determines a random variable 𝑌 = X𝜏

• e.g. 𝜏 = 𝑛 = 100 or 𝜏 =
min{𝑛: 𝑋𝑛−2 = 𝑋𝑛−1 = 𝑋𝑛 = 1}

4. We define a p-value on 𝑌

5. Observe data. If 𝑝 < 𝛼 reject 𝑯𝟎 , otherwise accept

6. Also report 𝑝-value as indication of strength of 

evidence against 𝑯𝟎



Two Problems with p-values

1. Type-I error guarantee not preserved under optional 

continuation – something we do all the time in 

modern practice!

• note: I do think the Type-I error guarantee is highly 

desirable! The problem is that it does not hold

2. Evidential Meaning is compromised by p-values 

dependence on counterfactual decisions



• Suppose reseach group A tests medication, gets 

‘promising but not conclusive’ result.

• ...whence group B tries again on new data.

• ...hmmm...still would like to get more evidence. 

Group C tries again on new data

• How to combine their test results?

First Problem with P-values
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• Current method, more often than not:

sweep data together and re-calculate p-value

• Is this p-hacking?  YES
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• Suppose reseach group A tests medication, gets 

‘promising but not conclusive’ result.

• ...whence group B tries again on new data.

• ...hmmm...still would like to get more evidence. 

Group C tries again on new data

• How to combine their test results?

• Current method:

sweep data together and re-calculate p-value

• Is this p-hacking?  YES
• Does meta-analysis have the tools to do this 

much better? NO

First Problem with P-values



What can go wrong if you re-

calculate p-values like this?

1. Do first test; observe 𝑌 1 = (X1, … , 𝑋100)

2. If significant (𝑝𝑌 1
< 0.05) reject and stop 

else do 2nd test on 2nd batch 𝑌 2 = (𝑋101, … , 𝑋200)

3. If significant (𝑝(𝑌 1 ,𝑌(2)) < 0.05) reject else accept

𝑝𝑌(1),𝑌(2) is a p-value defined on 𝑋200 which is the wrong 

sample space. In 𝑋200 each outcome is vector of 200 𝑋𝑖
′s

We should instead calculate a p-value on a sample space 

in which some outcomes have length 100 and other 200 



What can go wrong?

1. Do first test; observe 𝑌 1

2. If significant (𝑝𝑌 1
< 0.05) , reject and stop 

else…

3. …Do second test on second batch 𝑌 2

4. If significant (𝑝(𝑌 1 ,𝑌(2)) < 0.05) , reject and stop 

else…

5. …Do third test on third batch 𝑌 3 …

…if you keep doing this long enough, the Type-I error 

probability goes to 1 instead of 0.05 ! 



Second problem: 

p-values rely on counterfactuals

• Suppose I plan to test a new medication on exactly 100 

patients. I do this and obtain a (just) significant result   

(p =0.03 based on fixed n=100). I want to write a nice 

paper about this...But just to make sure I ask a 

statistician whether I did everything right. 
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• Now the statistician asks: what would you have done if 

your result had been ‘almost-but-not-quite’ significant?
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I’m not sure, I would have asked my boss for money to 

test another 50 patients”



p-values depend on 

counterfactuals

• Suppose I plan to test a new medication on exactly 100 

patients. I do this and obtain a (just) significant result   

(p =0.03 based on fixed n=100). But just to make sure I 

ask a statistician whether I did everything right. 

• Now the statistician asks: what would you have done if 

your result had been ‘almost-but-not-quite’ significant?

• I say “Well I never thought about that. Well, perhaps, but 

I’m not sure, I would have asked my boss for money to 

test another 50 patients”. 

• Now the statistician says: that means your result is 

invalid!  



p-values depend on 

counterfactuals

• Wheter or not a test based on p-values is valid depends 

on what you would have done in situations that did 

not occur!

• This is weird, both philosophically but also practically. In 

many testing situations it is simply impossible to know 

in advance what would have happened if the data had 

been different

• It also shows that it’s really problematic to think of p-

values as measuring evidence against the null!
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E is the new P

• We propose a generic replacement of 

the 𝑝-value that we call the 𝑒-value

• 𝑒-values handle optional continuation 

(to the next test (and the next, and ..)) 

without any problems

(simply multiply 𝑒-values of individual 

tests, despite dependencies)



E is the new P

• We propose a generic replacement of 

the 𝑝-value that we call the 𝑆-value

• 𝑆-values handle optional continuation 

(to the next test (and the next, and ..)) 

without any problems

(can simply multiply S-values of    

individual tests, despite dependencies)

E-variables have Fisherian, Neymanian and Bayes-

Jeffreys’ aspects to them, all at the same time

Cf. J. Berger (2003, IMS Medaillion Lecture): Could 

Neyman, Fisher and Jeffreys have agreed on testing?



e-variables/e-values: 

General Definition

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• An e-variable for sample size 𝑛 is a function                

such that for all 𝑃0 ∈ 𝐻0 , we have 



First Interpretation: p-values

• Proposition: Let S be an e-variable. Then 𝑆−1 𝑋𝑛 is a 

conservative p-value, i.e. p-value with wiggle room: 

• for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 , 

• Proof: just Markov’s inequality! 



“Safe” Tests

• The test against 𝐻0 at level 𝛼 based on e-variable 

S is defined as the test which rejects 𝐻0 if S 𝑋𝑛 ≥
1

𝛼

• Since 𝑆−1 is a conservative 𝑝-valuue...

• ....the test which rejects 𝐻0 iff  𝑆(𝑋𝑛) ≥ 20 , i.e.  

𝑆−1 𝑋𝑛 ≤ 0.05 , has Type-I Error Bound of 0.05



Second Interpretation: Likelihoods 

(when 𝑯𝟎 and 𝑯𝟏are simple) 

Consider 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝1 .Then likelihood ratio 

given by  

But then 𝑺 is also an E-variable! 



The Main Theorem of Safe Testing 

(G., De Heide, Koolen, ‘20) 

• Let 𝐻0 and 𝐻1 be (essentially) arbitrary.

• In particular, they can both be composite

• …and let 𝑌 represent the data from our experiment. 

• A non-trivial E-variable for 𝐻0 that tends to take on 

large values if 𝐻1 is true always exists!

• such E-variables often take on the form of Bayes 

factors; however, not all Bayes factors are E-

variables, and there are very useful E-variables 

that are not Bayes factors 
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e-value based tests are safe 

under optional continuation

• Suppose we observe data (𝑋1, 𝑍1), 𝑋2, 𝑍2 , …

• 𝑍𝑖:  side information

...coming in batches of size 𝑛1, 𝑛2, … , 𝑛𝑘. Let

• We first evaluate some e-value 𝑆1 on (𝑋1, … , 𝑋𝑛1).

• If outcome is in certain range (e.g. promising but not 

conclusive) and 𝑍𝑛1has certain values (e.g. ‘boss has 

money to collect more data’) then.... 

we evaluate some e-value 𝑆2 on 𝑋𝑛1+1, … , 𝑋𝑁2 ,

otherwise we stop.



Safe Tests are Safe

• We first evaluate 𝑆1.

• If outcome is in certain range and 𝑍𝑛1 has certain 

values then we evaluate 𝑆2 ; otherwise we stop.

• If outcome of 𝑆2 is in certain range and 𝑍𝑁2 has 

certain values then we compute 𝑆3 , else we stop.

• ...and so on

• ...when we finally stop, after say 𝐾 data batches, we 

report as final result the product 

• First Result, Informally: any 𝑺 composed of e-

values in this manner is itself an e-value, 

irrespective of the stop/continue rule used! 



Formalizing First Result

• Let 𝑌(𝑖) 𝑖∈ℕ
represent some random process. 

• A conditional e-variable 𝑆(𝑖) for 𝑌(𝑖) given 𝑌(𝑖−1) =

(𝑌1, … , 𝑌(𝑖−1)) is a nonnegative RV that is determined 

by 𝑌(𝑖) (i.e. it can be written as a fn 𝑆(𝑖) = 𝑓 𝑌(𝑖) ) 

and that satisfies, for all 𝑃0 ∈ 𝐻0 : 



Formalizing First Result

• Conditional e-variable: 

• Proposition: Let 𝑆(1), 𝑆(2), … be e-variables for 𝑌(𝑖)
conditional on 𝑌(𝑖−1). Then the process  𝑆 𝑖

𝑖∈ℕ
with 

𝑆(𝑛) = ς𝑖=1..𝑛 𝑆 𝑖 is a nonnegative supermartingale

• Consequence: Ville’s Inequality: 



“Safe” Tests are Safe

Pre-Ville’s Inequality:

Under any stopping time 𝜏, the end-product 

of all employed e-values ς𝑖=1.. 𝜏 𝑆 𝑖 is itself 

an e-value even if defn of 𝑆(𝑖) depends on 

past (then 𝑆(𝑖) is conditional e-value) 

Corollary: Type-I Error Guarantee Preserved 

under Optional Continuation

Suppose we combine e-values with arbitrary 

stop/continue strategy and reject 𝐻0 when final 

𝑆 𝜏 has 1/𝑆 𝜏 ≤ 0.05 . Then resulting test is “safe for 

optional continuation”: Type-I Error ≤ 0.05
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Corollary: Type-I Error Guarantee Preserved 
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Suppose we combine e-values with arbitrary 

stop/continue strategy and reject 𝐻0 when final 

𝑆 𝜏 has 1/𝑆 𝜏 ≤ 0.05 . Then resulting test is “safe for 

optional continuation”: Type-I Error ≤ 0.05



E-Values do not rely on 

counterfactual OC decisions

• Let 𝑌 1 be a random variable representing my first 

batch of data. 

• I quantify the evidence against 𝐻0 in 𝑌 1 by an E-

variable 𝑆(1) = 𝑠(𝑌 1 ). Say it is 10
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batch of data. 

• I quantify the evidence against 𝐻0 in 𝑌 1 by an E-

variable 𝑆(1) = 𝑠(𝑌 1 ). Say it is 10

• Now my boss tells me: ah if it would have been ≥ 18 I 

would have given you some money to organize a 

second study, and you could have calculated 𝑆(2) =

𝑠(𝑌 2 ) and report 𝑆(2) = 𝑠 𝑌(1) ⋅ 𝑠(𝑌(2))

• Does this mean your E-value is not valid any more?



E-Values do not rely on 

counterfactual OC decisions

• Let 𝑌 1 be a random variable representing my first 

batch of data. 

• I quantify the evidence against 𝐻0 in 𝑌 1 by an E-

variable 𝑆(1) = 𝑠(𝑌 1 ). Say it is 10

• Now my boss tells me: ah if it would have been ≥ 18 I 

would have given you some money to organize a 

second study, and you could have calculated 𝑆(2) =

𝑠(𝑌 2 ) and report 𝑆(2) = 𝑠 𝑌(1) ⋅ 𝑠(𝑌(2))

• Does this mean your E-value is not valid any more?

• No! …because 𝑆∗ = 𝑆 1 if 𝑆(1) < 18 and 𝑆(1) ⋅ 𝑆(2)
otherwise is still an E-value!
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E-Values, Likelihood Ratios, Bayes

• Bayes factor hypothesis testing

with 𝐻0 = 𝑝𝜃 𝜃 ∈ Θ0} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by 

where 

(Jeffreys ‘39)



E-values, LRs, Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Bayes factor of form

Note that  (no matter what prior 𝑊1 we chose)   



Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Bayes factor of form

Note that  (no matter what prior 𝑊1 we chose)   

The Bayes Factor for Simple 𝑯𝟎

is an e-value!

E-values, LRs, Bayes, simple 𝑯𝟎



Composite 𝑯𝟎: 

Bayes may not be Safe!

Bayes factor given by

E-value requires that for all 𝑃0 ∈ 𝐻0 :

...but for a Bayes factor we can only guarantee that  



Composite 𝑯𝟎: 

Bayesian testing can be unsafe!

• ...for Bayes factor we can in general only guarantee

• In general Bayesian tests with composite 𝐻0 are not 

safe ...which means that they loose their Type-I error 

guarantee interpretation when we combine Bayes 

factors on different studies

• Bayesian tests with composite 𝐻0 are safe if you 

really believe your prior on 𝐻0
• I usually don’t believe my prior, so no good for me! 



Composite 𝑯𝟎: 

Bayes may not be Safe!

Bayes factor given by

• In general Bayes factors with composite 𝐻0 are not 

E-values 

• ...but there do exist very special priors 𝑊1
∗ , 𝑊2

∗

(sometimes highly unlike priors that “Bayesian” 

statisticians tend to use!) for which Bayes factors 

become E-values and even very good E-values

• Main Theorem of G., De Heide, Koolen ’20, safe 

testing shows how to construct such priors 



E-Values vs Bayes, Part II: 

nonparametric 𝑯𝟎

• There is another issue with Bayesian testing: 

• At least when 𝑛 is small, not clear how to do a 

Bayesian test of a nonparametric null…



E-Values vs Bayes, Part II: 

nonparametric 𝑯𝟎 - Example

We observe independent data (𝑋1𝑎 , 𝑋1𝑏), 𝑋2𝑎 , 𝑋2𝑏 , …

• 𝐻0: for all 𝑖, distribution of 𝑋1𝑖 and 𝑋2𝑖 is  the same

• 𝐻1: (e.g.) for at least some 𝑖, they are different!

We make no further assumptions on 𝑯𝟎: could be 

Gaussian, Bernoulli, heavy-tailed, …. So: 𝐻0 is huge!

A classic p-value based test for this is Wilcoxon’s 

(1945!) signed-rank test – used 10000s of times



E-Values vs Bayes, Part II: 

nonparametric 𝑯𝟎 - Example

We observe independent data (𝑋1𝑎 , 𝑋1𝑏), 𝑋2𝑎 , 𝑋2𝑏 , …

• 𝐻0: for all 𝑖, distribution of 𝑋1𝑖 and 𝑋2𝑖 is  the same

• 𝐻1: (e.g.) for at least some 𝑖, they are different!

A classic p-value based test for this is Wilcoxon’s 

(1945!) signed-rank test – used 10000s of times

As a Bayesian you either have to make parametric 

assumptions or use a prior on a nonparametric set –

which (a) still will not cover all of 𝐻0 - and (b) which 

may need a large sample before it starts to work 



E-Values vs Bayes, Part II: 

nonparametric 𝑯𝟎 - Example

We observe independent data (𝑋1𝑎 , 𝑋1𝑏), 𝑋2𝑎 , 𝑋2𝑏 , …

• 𝐻0: for all 𝑖, distribution of 𝑋1𝑖 and 𝑋2𝑖 is  the same

• 𝐻1: (e.g.) for at least some 𝑖, they are different!

For  E-variable methodology, this setting is perfectly 

fine. Use for example the Efron-De la Pena E-Variable:

𝑆𝜆 ≔ exp 𝜆 ෍

𝑖=1..𝑛

𝑍𝑖 −
𝜆2

2
෍

𝑖=1..𝑛

𝑍𝑖
2

where 𝑍𝑖 = 𝑋𝑖𝑎 − 𝑋𝑖𝑏. Or better: 𝑆𝑤 ≔ ∫ 𝑆𝜆𝑑𝜆

We use a prior but we are still not Bayesian (at least not 

in the classic sense!)
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E-Values as Evidence

• p-values are still often used as evidence in data  

(small p-value means large evidence against the null)

• Bayesians and likelihoodists have severely 

attacked this interpretation (see e.g. Statistical 

Evidence: a Likelihood Paradigm by R. Royall) 



E-Values as Evidence

• p-values are still often used as evidence in data  

(small p-value means large evidence against the null)

• Bayesians and likelihoodists have severely 

attacked this interpretation (see e.g. Statistical 

Evidence: a Likelihood Paradigm by R. Royall) 

• Likelihood ratios are now the standard way to 

represent evidence in Courts of Law worldwide, e.g.

𝐻0: incomplete DNA sample from defendant

𝐻1: DNA sample not from defendant

• p-values have been more or less banned in court



E-Values as Evidence

• p-values are still often used as evidence in data  

(small p-value means large evidence against the null)

• tenuous!

• Likelihood ratios are now the standard way to 

represent evidence in Courts of Law worldwide, e.g.

𝐻0: incomplete DNA sample from defendant

𝐻1: DNA sample not from defendant

Idea: completely separate decision (‘testing’ in stats, 

‘verdict’ in court – supplied by judge) from pieces of

evidence (supplied by domain expert)



E-Values as Evidence

• p-values are still often used as evidence in data  

(small p-value means large evidence against the null)

• Interpretation very tenuous

• likelihood ratios: uncontroversial when 𝐻0 and 𝐻1 are 

simple…

….and then E-values, likelihoods and Bayes factors 

coincide

…so can we view E-values or Bayes factors or neither 

as a proper generalization of evidence for composite 𝐻0
and 𝐻1 ?



Bayes vs E 

• Likelihoodist and Bayesian evidence against 𝐻0
always evidence for 𝐻1
• problems** if 𝐻0 or 𝐻1 composite/nonparametric

• E-value can quantify evidence against 𝐻0 without this 

being evidence for a specific 𝐻1
• Like the p-value, but avoids problems such as OC 

and counterfactual dependence

• fine for composite 𝐻0 and 𝐻1. 



Bayes vs E: Luckiness Principle

• E-value can quantify evidence against 𝐻0 without this 

being evidence for a specific 𝐻1
• Composite 𝐻0, 𝐻1: we do get subjective component 

• different E-variables exist for same problem

• they also involve priors 

…bit this refers to luckiness rather than belief : 

• 𝐻0 false: the ‘better’ your prior, the more evidence 

against the null you get

• 𝐻0 true: no matter what prior chosen, it is extremely 

unlikely that you get substantial evidence against null



E-Values and evidence for 𝑯𝟏

• In some special cases, we can use E-values in 

combination with composite 𝐻0 and 𝐻1 also to gain 

evidence for 𝐻1
• still different from Bayes

• These require a certain symmetry between 𝐻0 and 𝐻1
This works e.g. in t-test setting, with 𝛿 = 𝜇/𝜎, if  for 

some 𝛿1 ≥ 𝛿0 we have: 

𝐻0: 𝛿 ≤ 𝛿0 ,  𝐻1: 𝛿 > 𝛿0



Evidence against? 

• Does it even make sense to have evidence against 

𝐻0 without clear evidence for a specific 𝐻1 ? 

• Age-old debate. Likelihoodists  think not. I disagree!

• Consider Quantum Random Number Generators. 

Ryabko and Monarev (2006) suggested to try to 

compress their output using WinZip

• If we can compress it by 200 bits, the null hypothesis 

of randomness (fair coin flips) gets an E-value of 

2−200 . I think that pretty much disproves 𝐻0 ! 

• more generally, there is a 1-1 correspondence

between E-values and codelenghts                     

using a specific type of codes 



there’s so much more…

• betting interpretation (Shafer 2020, JRRS A)

• Are all “unproblematic” extensions of likelihood 

(partial/conditional likelihood) really e-variables? 

• can use e-values to build always valid confidence 

sequences (Howard, Ramdas et al. – many papers)

• Our work is orthogonal to the discussion of 

‘whether testing makes sense at all’!

• e-values vs p-values: calibration, merging by mixing 

etc (Vovk, Wang, Shafer – several papers) 

• Practical applications developed in our group: Cox 

regression with optional stopping, 2x2 tables, … 



Who did what?

• G., De Heide, Koolen. Safe Testing, Arxiv 2020

shows e-values always exist and relation Bayes factors

• evidence Interpretation of E-values: not written down yet

• All other stuff you have seen is not really new!

Development of E-variables and the like: Glenn Shafer, 

Volodya Vovk 

(game theoretic probability)

Aaditya Ramdas

• counterfactual issues p-values:

• 1960s (e.g. Pratt, Birnbaum), 1980s (prequential, Dawid)

• Type I errors with optional stopping: Robbins+students (+-

1970). First appearance of E-variable: Levin (1975) 



Optional Continuation, simple 𝑯𝟎

• 𝑆𝑗 may be same function as 𝑆𝑗−1, e.g. (simple 𝐻0)

• But choice of 𝑗th e-value 𝑆𝑗 may also depend on 

previous 𝑋𝑁𝑗 , 𝑌𝑁𝑗 , e.g. 

and then (full compatibility with Bayesian updating)



I’ll only explain a special case:

separated hypotheses

• Suppose we are willing to admit that we’ll only be 

able to tell 𝐻0 and 𝐻1 apart if 𝑃 ∈ 𝐻0 ∪ 𝐻1
′ for some 

𝐻1
′ ⊂ 𝐻1 that excludes points that are ‘too close’ to 𝐻0

e.g. 



The best S-Value is given by the 

Joint Information Projection (JIPr)

ഥ𝑯𝟎
𝑯′

𝟏

set of all priors (prob distrs) on Θ1
′



Here 𝐷 is the relative entropy or Kullback-Leibler

divergence, the central divergence measure in 

information theory: 

Main Theorem



Suppose (𝑊1
∗,𝑊0

∗) exists. Then 

is (a) an S-variable relative to 𝐻0. (b) it is in some 

special sense the ‘best’ E-variable!

Main Theorem


