E is for Evidence

Peter Grünwald

Centrum Wiskunde & Informatica – Amsterdam Mathematical Institute – Leiden University

CWI

joint work with Rianne de Heide, Wouter Koolen, Alexander Ly, Muriel Pérez, Judith ter Schure, Rosanne Turner

is for Evidence

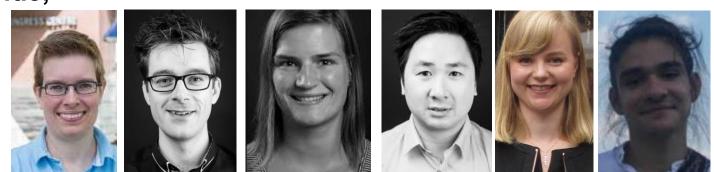
Ε

Peter Grünwald

Centrum Wiskunde & Informatica – Amsterdam Mathematical Institute – Leiden University

with Rianne de Heide,

Wouter Koolen, Judith ter Schure, Alexander Ly, Rosanne Turner, Muriel Perez



Replication Crisis in Science

somehow related to use of **P-Values** and significance testing...

Replication Crisis in Science

somehow related to use of Bayalues and significance testing ews AMERICAN STATISTICAL ASSOCIATION Promoting the Practice and Profession of Statistics 21 North Wathly, of Street, Alexandria, VA 22314 (703) 684-1221 • Toll Free: (880) 231-3473 • www.anstat.org • www.tetter.com/Amstat/News

AMERICAN STATISTICAL ASSOCIATION RELEASES STATEMENT ON STATISTICAL SIGNIFICANCE AND *P*-VALUES

Provides Principles to Improve the Conduct and Interpretation of Quantitative Science

March 7, 2016

The American Statistical Association (ASA) has released a "Statement on Statistical Significance and *P*-Values" with six principles underlying the proper use and interpretation of the *p*-value [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on *p*-values to improve the conduct and interpretation of quantitative

plication cance 2017 sticiation of the statistic cance and statist

and P-Values" with six principles underlying the proper use and interpretation of the p-value [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

(instatisticians) 2019 Redefine Sta to P Some of the

Abandon Significance: McShane et al. Auding Significance: including Some of the most famous

Provides Principles to Improve the Conduct and Science

March 7, 2016

zinetal. 2017

Fignificance

samous statisticians

The American Statistical Association (ASA) has released a "Statement on Statistical and *P*-Values" with six principles underlying the proper use and interpretation of the p-v [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

famous statisticians) 2019 CShane et al. e most famous AMERICAN STATISTICAL AS STATISTICAL SIGNIFICA

signatories (including some of the most

Abandon Sigr

Ito P 20.0

Rede

Scation

Rise Up Against Significance: 800

(including statistic:

Provides Principles to Improve the Conduct and Science

ificance

March 7, 2016

ticians

2017

incl-some of the The American Statistical Association (ASA) has released a "Statement on Statistical and *P*-Values" with six principles underlying the proper use and interpretation of the p-v [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

Menu

- 1. Null Hypothesis Testing, p-value
- 2. Two Problems with p-values
- 3. E is the new P
 - Conservative p-value interpretation
 - Likelihood ratio interpretation
 - How it solves the p-value problems
- 4. E-values and Bayes Factors
 - Main result of G., De Heide, Koolen '20 SafeTesting
- 5. E-Values and Evidence

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
 - For simplicity, today we assume data $X_1, X_2, ...$ are i.i.d. under all $P \in H_0$.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_θ, data are i.i.d. Bernoulli(θ)
 Θ₀ = {1/2}, Θ₁ = [0,1] \ {1/2}
 Standard test would measure frequency of 1s

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_{θ} , data are i.i.d. Bernoulli(θ) $\Theta_0 = \left\{\frac{1}{2}\right\}, \Theta_1 = [0,1] \setminus \left\{\frac{1}{2}\right\}$ Simple H_0 Standard test would measure frequency of 1s

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2)$ vs. $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2)$ for some $\mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_{\sigma} | \sigma \in (0, \infty) \}$ $H_1 = \{ P_{\sigma,\mu} | \sigma \in (0, \infty), \mu \in \mathbb{R} \setminus \{0\} \}$

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2) \vee S.$ $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2)$ for some $\mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_{\sigma} | \sigma \in (0, \infty) \}$ $H_1 = \{ P_{\sigma,\mu} | \sigma \in (0, \infty), \mu \in \mathbb{R} \setminus \{0\} \}$

Standard Method: p-value, significance

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
- A ("nonstrict/conservative") p-value is a random variable (!) such that, for all θ ∈ Θ₀,

$$P_{\theta_0} (\mathbf{p} \le \alpha) \le \alpha$$

 ...with continuous-valued data we typically use strict p-values, i.e.

$$P_{\theta_0} (\mathbf{p} \le \alpha) = \alpha$$

Standard Methodology of Neyman-Pearson testing

- 1. We fix H_0 (and H_1) and significance level α (e.g. 0.05)
- 2. We set a sample plan
 - e.g. n = 100, or 'stop as soon as you have seen three 1s in a row'
- 3. This determines random variable $Y = X^{\tau} = (X_1, ..., X_{\tau})$
 - e.g. $\tau = n = 100$ or $\tau = min\{n: X_{n-2} = X_{n-1} = X_n = 1\}$
- 4. We define a *p*-value on *Y*
- 5. We observe *Y*. If $p < \alpha$: **reject** H_0 , otherwise accept

Motivation behind Neyman-Pearson Test

- The **Type-I error** is the probability that we reject the null hypothesis even though it is true.
 - False alarm; medication seems to work even though it doesn't
- By the definition of p-value, for all $P \in H_0$,

 $P(\text{reject}) = P(p < \alpha) \le \alpha$

• Hence Type-I error is bounded by significance level α

Long-Run Rationale

- We determine (before experiment!) a significance level α and we 'reject' the null hypothesis iff $p < \alpha$
- This gives a **Type-I Error Probability bound** α
- If we follow this decision rule consistently throughout our lives and set e.g. $\alpha = 0.05$, then in long run we reject nulls while they are correct at most 5% of the time

Neyman's Inductive Behaviour Philosophy

Long-Run Rationale

- We determine (before experiment!) a significance level α and we 'reject' the null hypothesis iff $p < \alpha$
- This gives a **Type-I Error Probability bound** α
- If we follow this decision rule consistently throughout our lives and set e.g. $\alpha = 0.05$, then in long run we reject nulls while they are correct at most 5% of the time
- Strict Neyman-Pearson: do not mention p-value itself only decide reject or accept!

Standard Methodology of Neyman-Pearson testing

- 1. We fix H_0 (and H_1) and significance level α (e.g. 0.05)
- 2. We set a sample plan
 - e.g. n = 100, or 'stop as soon as you have seen three 1s in a row'
- 3. This determines a random variable $Y = X^{\tau}$
 - e.g. $\tau = n = 100$ or $\tau = min\{n: X_{n-2} = X_{n-1} = X_n = 1\}$
- 4. We define a *p*-value on *Y*
- 5. We observe data. If $p < \alpha$ we reject H_0 , otherwise we accept

Standard Methodology of Neyman Pearson testing in practice

- 1. We fix H_0 (and H_1) and significance level α (e.g. 0.05)
- 2. We set a sample plan
 - e.g. n = 100, or 'stop as soon as you have seen three 1s in a row'
- 3. This determines a random variable $Y = X^{\tau}$
 - e.g. $\tau = n = 100$ or $\tau = min\{n: X_{n-2} = X_{n-1} = X_n = 1\}$
- 4. We define a *p*-value on *Y*
- 5. Observe data. If $p < \alpha$ reject H_0 , otherwise accept
- 6. Also report p-value as indication of strength of evidence against H_0

Two Problems with p-values

- Type-I error guarantee not preserved under optional continuation – something we do all the time in modern practice!
 - note: I do think the Type-I error guarantee is highly desirable! The problem is that it does not hold
- 2. Evidential Meaning is compromised by p-values dependence on counterfactual decisions

First Problem with P-values

- Suppose reseach group A tests medication, gets 'promising but not conclusive' result.
- ...whence group B tries again on new data.
- ...hmmm...still would like to get more evidence.
 Group C tries again on new data
- How to combine their test results?

First Problem with P-values

- Suppose reseach group A tests medication, gets 'promising but not conclusive' result.
- ...whence group B tries again on new data.
- ...hmmm...still would like to get more evidence.
 Group C tries again on new data
- How to combine their test results?
- Current method, more often than not: sweep data together and re-calculate p-value
- Is this p-hacking? YES

First Problem with P-values

- Suppose reseach group A tests medication, gets 'promising but not conclusive' result.
- ...whence group B tries again on new data.
- ...hmmm...still would like to get more evidence.
 Group C tries again on new data
- How to combine their test results?
- Current method: sweep data together and re-calculate p-value
- Is this p-hacking? YES
- Does meta-analysis have the tools to do this much better? NO

What can go wrong if you recalculate p-values like this?

- 1. Do first test; observe $Y_{(1)} = (X_1, ..., X_{100})$
- 2. If significant ($p_{Y_{(1)}} < 0.05$) reject and stop else do 2nd test on 2nd batch $Y_{(2)} = (X_{101}, ..., X_{200})$
- 3. If significant $(p_{(Y_{(1)},Y_{(2)})} < 0.05)$ reject else accept

 $p_{Y_{(1)},Y_{(2)}}$ is a p-value defined on X^{200} which is the wrong sample space. In X^{200} each outcome is vector of 200 X'_i s We should instead calculate a p-value on a sample space in which some outcomes have length 100 and other 200

What can go wrong?

- 1. Do first test; observe $Y_{(1)}$
- 2. If significant $(p_{Y_{(1)}} < 0.05)$, reject and stop else...
- 3. ... Do second test on second batch $Y_{(2)}$
- 4. If significant $(p_{(Y_{(1)},Y_{(2)})} < 0.05)$, reject and stop else...
- 5. ... Do third test on third batch $Y_{(3)}$...

... if you keep doing this long enough, the Type-I error probability goes to 1 instead of 0.05 !

Second problem: p-values rely on counterfactuals

Suppose I plan to test a new medication on exactly 100 patients. I do this and obtain a (just) significant result (*p* =0.03 based on fixed *n*=100). I want to write a nice paper about this...But just to make sure I ask a statistician whether I did everything right.

- Suppose I plan to test a new medication on exactly 100 patients. I do this and obtain a (just) significant result (*p* =0.03 based on fixed *n*=100). But just to make sure I ask a statistician whether I did everything right.
- Now the statistician asks: what would you have done if your result had been 'almost-but-not-quite' significant?

- Suppose I plan to test a new medication on exactly 100 patients. I do this and obtain a (just) significant result (*p* =0.03 based on fixed *n*=100). But just to make sure I ask a statistician whether I did everything right.
- Now the statistician asks: what *would* you have done if your result had been 'almost-but-not-quite' significant?
- I say "Well I never thought about that. Well, perhaps, but I'm not sure, I would have asked my boss for money to test another 50 patients"

- Suppose I plan to test a new medication on exactly 100 patients. I do this and obtain a (just) significant result (*p* =0.03 based on fixed *n*=100). But just to make sure I ask a statistician whether I did everything right.
- Now the statistician asks: what *would* you have done if your result had been 'almost-but-not-quite' significant?
- I say "Well I never thought about that. Well, perhaps, but I'm not sure, I would have asked my boss for money to test another 50 patients".
- Now the statistician says: that means your result is invalid!

- Wheter or not a test based on p-values is valid depends on what you would have done in situations that did not occur!
- This is weird, both philosophically but also practically. In many testing situations it is simply impossible to know in advance what would have happened if the data had been different
- It also shows that it's really problematic to think of pvalues as measuring evidence against the null!

Menu

- 1. Null Hypothesis Testing, p-value
- 2. Two Problems with p-values

3. E is the new P

- Conservative p-value interpretation
- Likelihood ratio interpretation
- How it solves the p-value problems
- 4. E-values and Bayes Factors
 - Main result of G., De Heide, Koolen '20 SafeTesting
- 5. E-Values and Evidence

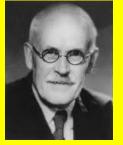
E is the new P

- We propose a generic replacement of the *p*-value that we call the *e*-value
- e-values handle optional continuation (to the next test (and the next, and ..)) without any problems

(simply multiply *e*-values of individual tests, despite dependencies)

E is the new P

E-variables have Fisherian, Neymanian and Bayes-Jeffreys' aspects to them, all at the same time



Cf. J. Berger (2003, IMS Medaillion Lecture): Could Neyman, Fisher and Jeffreys have agreed on testing? Individual tests, despite dependencies)

e-variables/e-values: General Definition

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- An **e-variable** for sample size *n* is a function $S : \mathcal{X}^n \to \mathbb{R}_0^+$ such that for **all** $P_0 \in H_0$, we have

$\mathbf{E}_{P_0}\left[S(X^n)\right] \le 1$

First Interpretation: p-values

- Proposition: Let S be an e-variable. Then $S^{-1}(X^n)$ is a conservative p-value, i.e. p-value with wiggle room:
- for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

• Proof: just Markov's inequality!

$$P\left(S(X^n) \ge \alpha^{-1}\right) \le \frac{\mathbf{E}[S(X^n)]}{\alpha^{-1}} = \alpha$$

"Safe" Tests

- The test against H_0 at level α based on e-variable S is defined as the test which rejects H_0 if $S(X^n) \ge \frac{1}{\alpha}$
- Since S^{-1} is a conservative *p*-value...
-the test which rejects H_0 iff $S(X^n) \ge 20$, i.e. $S^{-1}(X^n) \le 0.05$, has **Type-I Error** Bound of 0.05

Second Interpretation: Likelihoods (when H_0 and H_1 are simple)

Consider $H_0 = \{ p_0 \}$ and $H_1 = \{ p_1 \}$. Then likelihood ratio given by

$$S(X^n) := \frac{p_1(X_1, \dots, X_n)}{p_0(X_1, \dots, X_n)}$$

But then *S* is also an E-variable!

$$E_{X^{n} \sim P_{0}} [S(X^{n})] = \int p_{0}(x^{n}) \cdot \frac{p_{1}(X^{n})}{p_{0}(x^{n})} dx^{n} = \int p_{1}(x^{n}) dx^{n} = 1$$

The Main Theorem of Safe Testing (G., De Heide, Koolen, '20)

- Let H_0 and H_1 be (essentially) arbitrary.
 - In particular, they can both be composite
- ...and let *Y* represent the data from our experiment.
- A non-trivial E-variable for H₀ that tends to take on large values if H₁ is true always exists!
 - such E-variables often take on the form of Bayes factors; however, not all Bayes factors are Evariables, and there are very useful E-variables that are not Bayes factors

Menu

- 1. Null Hypothesis Testing, p-value
- 2. Two Problems with p-values
- 3. E is the new P
 - Conservative p-value interpretation
 - Likelihood ratio interpretation
 - How it solves the p-value problems
- 4. E-values and Bayes Factors
 - Main result of G., De Heide, Koolen '20 SafeTesting
- 5. E-Values and Evidence

e-value based tests are safe under optional continuation

- Suppose we observe data $(X_1, Z_1), (X_2, Z_2), \dots$
 - Z_i : side information ...coming in batches of size $n_1, n_2, ..., n_k$. Let $N_j := \sum_{i=1}^j n_i$
- We first evaluate some e-value S_1 on $(X_1, ..., X_{n_1})$.
- If outcome is in certain range (e.g. promising but not conclusive) and Z_{n_1} has certain values (e.g. 'boss has money to collect more data') then.... we evaluate some e-value S_2 on $(X_{n_1+1}, ..., X_{N_2})$,

otherwise we stop.

Safe Tests are Safe

- We first evaluate S_1 .
- If outcome is in certain range and Z_{n_1} has certain values then we evaluate S_2 ; otherwise we **stop.**
- If outcome of S_2 is in certain range and Z_{N_2} has certain values then we compute S_3 , else we **stop**.
- ...and so on
- ...when we finally stop, after say *K* data batches, we report as final result the product $S := \prod_{j=1}^{K} S_j$
- First Result, Informally: any *S* composed of evalues in this manner is itself an e-value, irrespective of the stop/continue rule used!

Formalizing First Result

- Let $(Y_{(i)})_{i \in \mathbb{N}}$ represent some random process.
- A conditional e-variable $S_{(i)}$ for $Y_{(i)}$ given $Y^{(i-1)} = (Y_1, ..., Y_{(i-1)})$ is a nonnegative RV that is determined by $Y^{(i)}$ (i.e. it can be written as a fn $S_{(i)} = f(Y^{(i)})$) and that satisfies, for all $P_0 \in H_0$:

$$\mathbf{E}_{P_0}\left[S_{(i)} \mid Y_{(1)}, \dots, Y_{(i-1)}\right] \le 1$$

Formalizing First Result

• **Conditional** e-variable:

$$\mathbf{E}_{P_0}\left[S_{(i)} \mid Y_{(1)}, \dots, Y_{(i-1)}\right] \le 1$$

- **Proposition:** Let $S_{(1)}, S_{(2)}, ...$ be e-variables for $Y_{(i)}$ conditional on $Y^{(i-1)}$. Then the process $(S^{(i)})_{i \in \mathbb{N}}$ with $S^{(n)} = \prod_{i=1..n} S_{(i)}$ is a nonnegative supermartingale
- Consequence: Ville's Inequality: $P_0(\exists i: S^{(i)} \ge 1/\alpha) \le \alpha.$

"Safe" Tests are Safe

Pre-Ville's Inequality:

Under any stopping time τ , the end-product of all employed e-values $\prod_{i=1...\tau} S_{(i)}$ is **itself an e-value** even if defn of $S_{(i)}$ depends on past (then $S_{(i)}$ is conditional e-value)

Corollary: Type-I Error Guarantee Preserved under Optional Continuation

Suppose we combine e-values with arbitrary stop/continue strategy and reject H_0 when final $S^{(\tau)}$ has $1/S^{(\tau)} \le 0.05$. Then resulting test is "safe for optional continuation": Type-I Error ≤ 0.05

Safe Tests are Safe

, une end-provalues! , une evalues $\prod_{i=1,...,n}$ of Poelf une-value even if defined of coolerends on past (then $S_{(i)}$ is condiminal provalue) Corollary: Type-Life a certarantee Preserved under Option solvermuation Support unestrate $S_{(i)}$ intervalues: **Pre-Ville:** has $1/S^{(\tau)} \leq 0.05$. Then resulting test is "safe for $S^{(\tau)}$ optional continuation": Type-I Error ≤ 0.05

E-Values do not rely on counterfactual OC decisions

- Let $Y_{(1)}$ be a random variable representing my first batch of data.
- I quantify the evidence against H_0 in $Y_{(1)}$ by an E-variable $S_{(1)} = s(Y_{(1)})$. Say it is 10

E-Values do not rely on counterfactual OC decisions

- Let $Y_{(1)}$ be a random variable representing my first batch of data.
- I quantify the evidence against H_0 in $Y_{(1)}$ by an E-variable $S_{(1)} = s(Y_{(1)})$. Say it is 10
- Now my boss tells me: ah if it would have been ≥ 18 I would have given you some money to organize a second study, and you could have calculated S₍₂₎ = s(Y₍₂₎) and report S⁽²⁾ = s(Y₍₁₎) ⋅ s(Y₍₂₎)
- Does this mean your E-value is not valid any more?

E-Values do not rely on counterfactual OC decisions

- Let $Y_{(1)}$ be a random variable representing my first batch of data.
- I quantify the evidence against H_0 in $Y_{(1)}$ by an E-variable $S_{(1)} = s(Y_{(1)})$. Say it is 10
- Now my boss tells me: ah if it would have been ≥ 18 I would have given you some money to organize a second study, and you could have calculated $S_{(2)} = s(Y_{(2)})$ and report $S^{(2)} = s(Y_{(1)}) \cdot s(Y_{(2)})$
- Does this mean your E-value is not valid any more?
- No! ... because $S^* = S_{(1)}$ if $S_{(1)} < 18$ and $S_{(1)} \cdot S_{(2)}$ otherwise is still an E-value!

Menu

- 1. Null Hypothesis Testing, p-value
- 2. Two Problems with p-values
- 3. E is the new P
 - Conservative p-value interpretation
 - Likelihood ratio interpretation
 - How it solves the p-value problems
- 4. E-values and Bayes Factors
 - Main result of G., De Heide, Koolen '20 SafeTesting
- 5. E-Values and Evidence

E-Values, Likelihood Ratios, Bayes

Bayes factor hypothesis testing (Jeffreys '39)
 with H₀ = { p_θ | θ ∈ Θ₀} vs H₁ = { p_θ | θ ∈ Θ₁} :
 Evidence in favour of H₁ measured by

$$\frac{p_{W_1}(X_1,\ldots,X_n)}{p_{W_0}(X_1,\ldots,X_n)}$$

where

$$p_{W_1}(X_1, \dots, X_n) := \int_{\theta \in \Theta_1} p_{\theta}(X_1, \dots, X_n) dW_1(\theta)$$

$$p_{W_0}(X_1, \dots, X_n) := \int_{\theta \in \Theta_0} p_{\theta}(X_1, \dots, X_n) dW_0(\theta)$$

E-values, LRs, Bayes, simple H_0

Bayes factor hypothesis testing

between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_{\theta} | \theta \in \Theta_1 \}$: Bayes factor of form

$$M(X^{n}) := \frac{p_{W_{1}}(X_{1}, \dots, X_{n})}{p_{0}(X_{1}, \dots, X_{n})}$$

Note that (no matter what prior W_1 we chose) $E_{X^n \sim P_0} [M(X^n)] = \int p_0(x^n) \cdot \frac{p_{W_1}(X^n)}{p_0(x^n)} dx^n = \int p_{W_1}(x^n) dx^n = 1$

E-values, LRs, Bayes, simple H_0

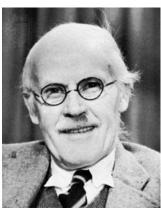
Bayes factor hypothesis testing

between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_\theta | \theta \in \Theta_1 \}$: Bayes factor of form

$$M(X^{n}) := \frac{p_{W_{1}}(X_{1}, \dots, X_{n})}{p_{0}(X_{1}, \dots, X_{n})}$$

Note that (no matter what prior W_1 we chose) $E_{X^n \sim P_0}[M(X^n)] = 1$

The Bayes Factor for Simple *H*₀ is an e-value!



Composite *H*₀: Bayes may not be Safe!

Bayes factor given by $M(X^n) := \frac{p_{W_1}(X_1, \dots, X_n)}{p_{W_0}(X_1, \dots, X_n)}$

E-value requires that for all $P_0 \in H_0$:

$$\mathbf{E}_{X^n \sim P_0} \left[M(X^n) \right] \le 1$$

...but for a Bayes factor we can only guarantee that $\mathbf{E}_{X^n \sim P_{W_0}}\left[M(X^n)\right] \leq 1$

Composite *H*₀: Bayesian testing can be unsafe!

• ...for Bayes factor we can in general only guarantee

$$\mathbf{E}_{X^n \sim P_{W_0}}\left[M(X^n)\right] \le 1$$

- In general Bayesian tests with composite H₀ are not safe ...which means that they loose their Type-I error guarantee interpretation when we combine Bayes factors on different studies
- Bayesian tests with composite H_0 are safe if you really believe your prior on H_0
- I usually don't believe my prior, so no good for me!

Composite *H*₀: Bayes may not be Safe!

Bayes factor given by $M(X^n) := \frac{p_{W_1}(X_1, \dots, X_n)}{p_{W_0}(X_1, \dots, X_n)}$

- In general Bayes factors with composite H₀ are not E-values
- ...but there do exist very special priors W₁^{*}, W₂^{*}
 (sometimes highly unlike priors that "Bayesian" statisticians tend to use!) for which Bayes factors become E-values and even very good E-values
- Main Theorem of G., De Heide, Koolen '20, safe testing shows how to construct such priors

E-Values vs Bayes, Part II: nonparametric H₀

- There is another issue with Bayesian testing:
- At least when *n* is small, not clear how to do a Bayesian test of a nonparametric null...

E-Values vs Bayes, Part II: nonparametric *H*₀ - Example

We observe independent data $(X_{1a}, X_{1b}), (X_{2a}, X_{2b}), \dots$

- H_0 : for all *i*, distribution of X_{1i} and X_{2i} is the same
- H_1 : (e.g.) for at least some *i*, they are different!

We make **no further assumptions on H_0**: could be Gaussian, Bernoulli, heavy-tailed, So: H_0 is huge!

A classic p-value based test for this is Wilcoxon's (1945!) signed-rank test – used 10000s of times

E-Values vs Bayes, Part II: nonparametric *H*₀ - Example

We observe independent data $(X_{1a}, X_{1b}), (X_{2a}, X_{2b}), \dots$

- H_0 : for all *i*, distribution of X_{1i} and X_{2i} is the same
- H_1 : (e.g.) for at least some *i*, they are different!

A classic p-value based test for this is Wilcoxon's (1945!) signed-rank test – used 10000s of times As a Bayesian you either have to make parametric assumptions or use a prior on a nonparametric set – which (a) still will not cover all of H_0 - and (b) which may need a large sample before it starts to work

E-Values vs Bayes, Part II: nonparametric *H*₀ - Example

We observe independent data $(X_{1a}, X_{1b}), (X_{2a}, X_{2b}), \dots$

- H_0 : for all *i*, distribution of X_{1i} and X_{2i} is the same
- *H*₁: (e.g.) for at least some *i*, they are different! For E-variable methodology, this setting is perfectly fine. Use for example the **Efron-De la Pena** E-Variable:

$$S_{\lambda} \coloneqq \exp\left(\lambda \sum_{i=1..n} Z_i - \left(\frac{\lambda^2}{2} \sum_{i=1..n} Z_i^2\right)\right)$$

where $Z_i = X_{ia} - X_{ib}$. Or better: $S_w := \int S_\lambda d\lambda$

We use a prior but we are still not Bayesian (at least not in the classic sense!)

Menu

- 1. Null Hypothesis Testing, p-value
- 2. Two Problems with p-values
- 3. E is the new P
 - Conservative p-value interpretation
 - Likelihood ratio interpretation
 - How it solves the p-value problems
- 4. E-values and Bayes Factors
 - Main result of G., De Heide, Koolen '20 SafeTesting
- 5. E-Values and Evidence

- p-values are still often used as evidence in data (small p-value means large evidence against the null)
 - Bayesians and likelihoodists have severely attacked this interpretation (see e.g. Statistical Evidence: a Likelihood Paradigm by R. Royall)

- p-values are still often used as evidence in data (small p-value means large evidence against the null)
 - Bayesians and likelihoodists have severely attacked this interpretation (see e.g. Statistical Evidence: a Likelihood Paradigm by R. Royall)
- Likelihood ratios are now the standard way to represent evidence in Courts of Law worldwide, e.g.
 H₀: incomplete DNA sample from defendant
 - H_1 : DNA sample not from defendant
 - p-values have been more or less banned in court

- p-values are still often used as evidence in data (small p-value means large evidence against the null)
 - tenuous!
- Likelihood ratios are now the standard way to represent evidence in Courts of Law worldwide, e.g.

 H_0 : incomplete DNA sample from defendant

 H_1 : DNA sample not from defendant

Idea: completely separate decision ('testing' in stats, 'verdict' in court – supplied by judge) from pieces of evidence (supplied by domain expert)

- p-values are still often used as evidence in data (small p-value means large evidence against the null)
 - Interpretation very tenuous
- likelihood ratios: uncontroversial when H_0 and H_1 are simple...

....and then E-values, likelihoods and Bayes factors coincide

...so can we view E-values or Bayes factors or neither as a proper generalization of evidence for composite H_0 and H_1 ?

Bayes vs E

- Likelihoodist and Bayesian evidence against H_0 always evidence for H_1
 - problems^{**} if H_0 or H_1 composite/nonparametric
- E-value can quantify evidence against H_0 without this being evidence for a specific H_1
 - Like the p-value, but avoids problems such as OC and counterfactual dependence
 - fine for composite H_0 and H_1 .

Bayes vs E: Luckiness Principle

- E-value can quantify evidence against H_0 without this being evidence for a specific H_1
- Composite H_0, H_1 : we do get subjective component
 - different *E*-variables exist for same problem
 - they also involve priors
- ... bit this refers to **luckiness** rather than **belief** :
- H_0 false: the 'better' your prior, the more evidence against the null you get
- H_0 true: no matter what prior chosen, it is extremely unlikely that you get substantial evidence against null

E-Values and evidence for H_1

- In some special cases, we can use E-values in combination with composite H_0 and H_1 also to gain evidence for H_1
 - still different from Bayes
- These require a certain symmetry between H_0 and H_1 This works e.g. in t-test setting, with $\delta = \mu/\sigma$, if for some $\delta_1 \ge \delta_0$ we have:

 $H_0: \delta \leq \delta_0 , \ H_1: \delta > \ \delta_0$

Evidence against?

- Does it even make sense to have evidence against H_0 without clear evidence for a specific H_1 ?
- Age-old debate. Likelihoodists think not. I disagree!
- Consider Quantum Random Number Generators. Ryabko and Monarev (2006) suggested to try to compress their output using WinZip
- If we can compress it by 200 bits, the null hypothesis of randomness (fair coin flips) gets an E-value of 2^{-200} . I think that pretty much disproves H_0 !
- more generally, there is a 1-1 correspondence between E-values and codelenghts using a specific type of codes

the Minimum Description Length principle

there's so much more...

- **betting** interpretation (Shafer 2020, JRRS A)
 - Are all "unproblematic" extensions of likelihood (partial/conditional likelihood) really e-variables?
- can use e-values to build always valid confidence sequences (Howard, Ramdas et al. – many papers)
 - Our work is orthogonal to the discussion of 'whether testing makes sense at all'!
- e-values vs p-values: calibration, merging by mixing etc (Vovk, Wang, Shafer – several papers)
- Practical applications developed in our group: Cox regression with optional stopping, 2x2 tables, ...

Who did what?

- G., De Heide, Koolen. *Safe Testing, Arxiv 2020 shows e-values always exist and relation Bayes factors*
- evidence Interpretation of E-values: not written down yet
- All other stuff you have seen is not really new!

Development of E-variables and the like: Glenn Shafer, Volodya Vovk

(game theoretic probability) Aaditya Ramdas

- counterfactual issues p-values:
- 1960s (e.g. Pratt, Birnbaum), 1980s (prequential, Dawid)
- Type I errors with optional stopping: Robbins+students (+-1970). First appearance of E-variable: Levin (1975)

Optional Continuation, simple H_0

• S_j may be same function as S_{j-1} , e.g. (simple H_0)

$$S_{1} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{1}, \dots, X_{n_{1}}) dW(\theta)}{p_{0}(X_{1}, \dots, X_{n_{1}})} \qquad S_{2} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{n_{1}+1}, \dots, X_{N_{2}}) dW(\theta)}{p_{0}(X_{n_{1}+1}, \dots, X_{N_{2}})}$$

But choice of *j*th e-value S_j may also depend on previous X^{N_j}, Y^{N_j}, e.g.

$$S_{2} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{n_{1}+1}, \dots, X_{N_{2}}) dW(\theta \mid X_{1}, \dots, X_{n_{1}})}{p_{0}(X_{n_{1}+1}, \dots, X_{N_{2}})}$$

and then (full compatibility with Bayesian updating
$$S_{1} \cdot S_{2} = \frac{\int p_{\theta}(X_{1}, \dots, X_{N_{2}}) dW(\theta)}{p_{0}(X_{1}, \dots, X_{N_{2}})}$$

I'll only explain a special case: separated hypotheses

Suppose we are willing to admit that we'll only be able to tell H₀ and H₁ apart if P ∈ H₀ ∪ H'₁ for some H'₁ ⊂ H₁ that excludes points that are 'too close' to H₀ e.g.

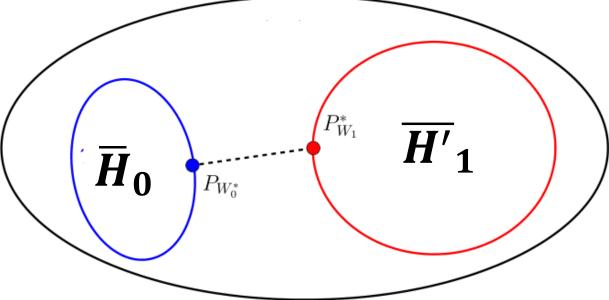
$$H'_{1} = \{P_{\theta} : \theta \in \Theta'_{1}\}, \Theta'_{1} = \{\theta \in \Theta_{1} : \inf_{\theta_{0} \in \Theta_{0}} \|\theta - \theta_{0}\|_{2} \ge \delta\}$$

The best S-Value is given by the **Joint Information Projection (JIPr)**

$$p_{W}(X^{n}) := \int p_{\theta}(X^{n}) dW(\theta)$$

$$\mathcal{W}_{1} \text{ set of all priors (prob distrs) on } \Theta'_{1}$$

$$(W_{1}^{*}, W_{0}^{*}) := \arg \min_{W_{1} \in \mathcal{W}_{1}} \min_{W_{0}: \text{distr on } \Theta_{0}} D(P_{W_{1}} || P_{W_{0}})$$



Main Theorem

$$p_W(X^n) := \int p_\theta(X^n) dW(\theta)$$
$$(W_1^*, W_0^*) := \arg\min_{\substack{W_1 \in \mathcal{W}_1 \ W_0: \text{distr on } \Theta_0}} D(P_{W_1} \| P_{W_0})$$

Here *D* is the relative entropy or Kullback-Leibler divergence, the central divergence measure in information theory:

$$D(P||Q) := \mathbf{E}_{X^n \sim P} \left[\log \frac{p(X^n)}{q(X^n)} \right]$$

Main Theorem

$$p_W(X^n) := \int p_\theta(X^n) dW(\theta)$$
$$(W_1^*, W_0^*) := \arg\min_{\substack{W_1 \in \mathcal{W}_1 \mid W_0: \text{distr on } \Theta_0}} D(P_{W_1} || P_{W_0})$$

Suppose
$$(W_1^*, W_0^*)$$
 exists. Then $S^* := \frac{p_{W_1^*}(X^n)}{p_{W_0^*}(X^n)}$

is (a) an S-variable relative to H_0 . (b) it is in some special sense the 'best' E-variable!