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Safe Probability  (Informal)

A probability distribution 𝑃∘ 𝑋, 𝑌 is called safe for 

prediction of random variable 𝑌 given 𝑋 relative to a 

class of decision problems 𝒟 if: 

for every problem in 𝒟, acting as if 𝑃∘ were correct 

will have the same consequences as it would if 

𝑃∘ were indeed correct - even though 𝑃∘ may in fact 

be wrong



Safe Probability  (Informal)

A probability distribution 𝑃∘ 𝑋, 𝑌 is called safe for 

prediction of random variable 𝑌 given 𝑋 relative to a 

class of decision problems 𝒟 if: 

for every problem in 𝒟, acting as if 𝑃∘ were correct 

(taking the action that maximizes expected utility 

under 𝑃∘) were will have the same consequences as 

it would if 𝑃∘ were indeed correct - even though 𝑃∘

may in fact be wrong



Safe Probability  (Informal)

A probability distribution 𝑃∘ 𝑋, 𝑌 is called safe for 

prediction of random variable 𝑌 given 𝑋 relative to a 

class of decision problems 𝒟 if: 

for every problem in 𝒟, acting as if 𝑃∘ were correct 

will have the same consequences as it would if 

𝑃∘ were indeed correct - even though 𝑃∘ may in fact 

be wrong

We call 𝑃∘a pragmatic distribution



Why develop Safe Probability?

• explains why people/algorithms often do something

seemingly wrong and get away with it (or not) 

• clarifies much of the discussion between subjective 

and objective Bayesians, entropy maximizers, 

imprecise probabilists, fiducialists, and frequentists

• and points towards a unified view? 



Why Safe Probability at PROGIC?

• For logicians: may point towards new (?) pragmatic 

concept of truth (conditions)…

• For probabilists: points towards interesting 

generalization of measure theory



Safe Probability  (Strong Version)

• A probability distribution 𝑃∘ 𝑋, 𝑌 is called safe for 

prediction of random variable 𝑌 given 𝑋 relative to a 

class of decision problems 𝒟 if: 

for every problem in 𝒟, acting as if 𝑃∘ were correct 

will have exactly the same consequences as it would 

if 𝑃∘ were correct - even though 𝑃∘may in fact be 

wrong



Menu

1. Example 1: Marginals

• Extends to calibrated 𝑃∘

2. Example 2: Monty Hall 

• 𝑃∘ not a marginal/not calibrated, still safe

3. Example 3: Objective Bayes, Jeffreys’ Prior

4. A Unification of Bayesian, Imprecise Probability and 

Frequentist Ideas? 



Safety with Marginal Probabilities

• Suppose you’re a doctor and a patient comes in with 

a light fever and a swollen cheek. 

• You know from the literature that, in the general 

population, 90% of people with these symptoms have 

the mumps

• You also observe the patient’s gender. You know that 

the probability may very well depend significantly on 

the patient’s gender but you have no idea how 

exactly the relation goes…

When Ignorance is Bliss, G. & Halpern ’04



Safety with Marginals

• Given: marginal probability of 𝑌. 𝑌 may depend on 𝑋, 

but we have no idea how

• Task:  predict 𝑌 given 𝑋.

• Suppose we observe 𝑋 = 0. Now conditional 

probability could be anything...

• Similarly if we observe 𝑋 = 1:

• How to predict? Reporting the full set of conditional

probabilities given 𝑋 does not give anything useful...



Safety with Marginals

• Given: marginal probability of 𝑌. 𝑌 may depend on 𝑋, 

but we have no idea how

• Task:  predict 𝑌 given 𝑋.

• Reporting the full set of conditional probabilities given 

𝑋 does not give anything useful...

• ...so what to do?

One option is to simply ignore 𝑋 and predict 𝑌 with its 

marginal, irrespective of 𝑋 , i.e. use

𝑃∘ 𝑌 = 1 𝑋 = 1 = 𝑃∘ 𝑌 = 1 𝑋 = 0 = 0.9



First Safety Result

• Let now 𝒳,𝒴 be arbitrary, and suppose we know the 

marginal 𝑃 𝑌 . Let   

• Use (=base decisions on) pragmatic 𝑃∘ with 

𝑃∘ 𝑌 𝑋 = 𝑥 = 𝑃∗ 𝑌 , i.e. act as if 𝑋, 𝑌 independent

• For every loss function 𝐿: 𝒴 ×𝒜 → ℝ, all 𝑃∗ ∈ 𝒫∗:



First Safety Result

• Let now 𝒳,𝒴 be arbitrary, and suppose we know the 

marginal 𝑃 𝑌 . Let   

• Use (=base decisions on) pragmatic 𝑃∘ with 

𝑃∘ 𝑌 𝑋 = 𝑥 = 𝑃∗ 𝑌 , i.e. act as if 𝑋, 𝑌 independent

• For every loss function 𝐿: 𝒴 ×𝒜 → ℝ, all 𝑃∗ ∈ 𝒫∗:

• We say that predicting 𝑌 using 𝑃∘|𝑋 is safe for every 

fixed loss function 𝐿 that depends on 𝑌only.



Safe Decision Problems

For every loss function 𝐿: 𝒴 ×𝒜 → ℝ, all 𝑃∗ ∈ 𝒫∗:

Bayes act



Safe Decision Problems

For every loss function 𝐿: 𝒴 ×𝒜 → ℝ, all 𝑃∗ ∈ 𝒫∗:

Bayes act

Decision-Maker’s pragmatic distribution
“true” distribution



Example: 0/1-Loss

Example: 0/1-loss: 

𝒜 = 𝒴, 𝐿 𝑦, 𝑎 = 0 if 𝑦 = 𝑎, 1 otherwise

With 𝒳 = 𝒴 = 0,1 and 𝒫∗ as before, for 𝑥 ∈ 0,1 :

and then above just says 

…but example extends to arbitrary 𝒜,𝒴, 𝐿



Data-Oriented Re-Interpretation 

• Suppose we get an i.i.d. sample 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , …

• If we think that it comes from 𝑃∘, we would use 𝛿𝑃∘|𝑋𝑖 at 

time 𝑖 and be very certain that in long run average loss                          

would converge to 

• In our binary example we would be very certain to be correct 

about 90% of the time



Data-Oriented Re-Interpretation 

• Suppose we get an i.i.d. sample 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , …

• If we think that it comes from 𝑃∘, we would use 𝛿𝑃∘|𝑋𝑖 at 

time 𝑖 and be very certain that in long run average loss                          

would converge to 

• In our binary example we would be very certain to be correct 

about 90% of the time

• Even though 𝑃∗is wrong, the above conclusions based 

on 𝑃∘ are still correct if data is from any 𝑃∗ ∈ 𝒫∗

If we act according to 𝑷∘, the world behaves as if 𝑷∘

were correct, even though it is not

Remainder of this talk: much less trivial examples in 

which 𝑷∘|𝑿 does depend on 𝑿 yet is still not ‘correct’



An Unsafe Decision Problem

• Suppose the relevant loss function may depend on 𝑋

• Then using 𝑃∘ that ignores X is unsafe, for we may 

very well have

• In our example, a misclassification of the disease 

may e.g. have worse consequences if 𝑋 is female 

• 𝐿0 𝑦, 𝑦 = 𝐿1 𝑦, 𝑦 = 0 ; 

• 𝐿0 𝑦, 𝑎 = 1, 𝐿1 𝑦, 𝑎 = 100 if 𝑦 ≠ 𝑎

• e.g.…𝑔 𝑥 = 𝑥



Safe Probability  

A probability distribution 𝑃 𝑋, 𝑌 is called  safe relative 

to a class of decision problems 𝒟 if for every problem in 

𝒟, acting as if 𝑃 were correct will have the same 

consequences as it would if 𝑃 were correct - even 

though 𝑃 may in fact be wrong

• i.e. for all 𝐿 ∈ 𝒟 , all 𝑃∗ ∈ 𝒫∗ (one version of safety)
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Safe Probability  

A probability distribution 𝑃 𝑋, 𝑌 is called  safe relative 

to a class of decision problems 𝒟 if for every problem in 

𝒟, acting as if 𝑃 were correct will have the same 

consequences as it would if 𝑃 were correct - even 

though 𝑃 may in fact be wrong

• i.e. for all 𝐿 ∈ 𝒟 , all 𝑃∗ ∈ 𝒫∗ (one version of safety)

• but we may also require instead (one-sided version): 

or  (weaker version) 



Safe Probability  

• G. ‘18 describes various notions of safety, varying in 

wideness of 𝒟 (from all decision problems to a single 

specific RV) and the meaning of consequences (use 

of expectation, inequality…)

• Strongest notion: validity

• 𝑃∘ safe for every prediction problem that can be 

defined on your sample space

• Frequentist would say “𝑃∘ is true”, Bayesian would 

say “𝑃∘ fully and correctly describes my beliefs”

• Weakest notion: unbiasedness relative to fixed 𝑈

• 𝐄𝑃∘ 𝑈 = 𝐄𝑃∗ 𝑈 , otherwise nothing can be said



Safe Probability  

Strongest safety notion: validity

Weakest notion: unbiasedness relative to fixed RV

…inbetween are several other kinds of safety, such as:

• calibration

• weather forecasting!

• previous example (ignoring 𝑋) is very special case

• fiducial/confidence safety

• use (Fisher) fiducial and objective Bayes posteriors 

safely for some, but not all prediction tasks...

• …and more to be developed!



The Weather Forecaster

• A weather forecaster predicts daily precipitation 

probabilities 𝑃∘ 𝑈 = rain 𝑉 , based on measurements 

of air pressure and temperature taken all over the world

• 𝑉 is giant vector. WF will probably not be able to give 

accurate predictions given the air pressure in Honolulu, 

although her predictions do depend thereon. 

• We don’t mind this, but we do want her to be 

calibrated:

given that the says “the probability is 𝑝”, it should 

be approximately 𝑝



Calibration is a form of Safety

• We say that 𝑃∘ 𝑈 𝑉 is calibrated

.....if for all

• Calibration implies loss-safety as defined earlier for 

all loss functions that can be written as a function of 

𝑈 . Validity implies loss-safety for all loss functions 

that can be written as a function of (𝑈, 𝑉). 



Main Result of G. ’18:

The Hierarchy

fiducially   

measurable fns of 𝑈

measurable fns of (𝑈, 𝑉′)   



Main Result of G. ’18:

The Hierarchy

fiducially   

measurable fns of 𝑈

measurable fns of (𝑈, 𝑉′)   

Generalization of 

measure-theoretic 

probability?
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1. Example 1: Marginals

• Extends to calibrated 𝑃∘

2. Example 2: Monty Hall 

• 𝑃∘ not a marginal/not calibrated, still safe

3. Example 3: Objective Bayes, Jeffreys’ Prior

4. A Unification of Bayesian, Imprecise Probability and 
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Monty Hall

• There are three doors in the TV studio. Behind one 
door is a car, behind both other doors a goat. You 
choose one of the doors. Monty Hall opens one of the 
other two doors, and shows that there is a goat 
behind it. You are now allowed to switch to the other 
door that is still closed. Is it smart to switch?



The Monty Hall Wikipedia Wars

• Both sides agree:

1. It is better to switch!

2. To model problem correctly, you must take Monty’s Protocol 

into account – what does Monty do when he has a choice? 

(Gill 11, Mlodinow 08)



The Monty Hall Wikipedia Wars

• Both sides agree:

1. It is better to switch!

2. To model problem correctly, you must take Monty’s Protocol 

into account – what does Monty do when he has a choice? 

• “war” is about how to prove that switching is better:  

• “strictly Bayesian”: via conditioning, with 

additional assumption that Monty chooses by 

tossing a fair coin

• show that switching is a dominating strategy 

(“credal sets”/”imprecise probability”)

(Gill 11, Mlodinow 08)



Strict Bayesians vs 

Imprecise Probabilists

• Strictly Bayesian: Your uncertainty can be modeled 

by a single distribution 

• Ramsey (‘31), De Finetti (‘37), Savage (‘54), Cox* (‘61), …

• Expected Utility in economics

• Imprecise: Your uncertainty can be modeled by a set 

of distributions

• Keynes (1921), Seidenfeld (‘83), Walley (‘91), others…

• Knightian Uncertainty

• ‘Multiple Priors’ in economics 



The Model on which both sides agree

• Suppose Contestant invariably chooses door a.

• Let RV 𝑌 denote location of car: 

• Let RV 𝑋 denote Monty’s action:

means Monty opens door c.

means Monty opens door b.  



The Model on which they agree

• Suppose Contestant invariably chooses door a.

• Let 𝑌 denote location of car.

• Let 𝑋 denote Monty’s action.



The Sets-of-Probabilities Side

• Suppose Contestant invariably chooses door a.

• Let 𝑌 denote location of car.

• Let 𝑋 denote Monty’s action.

!



The Strict Bayesian Side

• Suppose Contestant invariably chooses door a.

• Let 𝑌 denote location of car. 

• Let 𝑋 denote Monty’s action.



• Let’s be a strict Bayesian and  pretend that choices 

in protocol were made by fair coin tosses:

...implying the familiar result

Assuming an Unbiased Monty 



• ..., i.e. use 

This is

1. safe and 

2. minimax optimal 

....under all symmetric decision problems

Hence there is a useful middle ground between 

strict Bayes and imprecise probability

Assuming an Unbiased Monty... 



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

where

Safety 



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Example:

Safety

=1/3



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Safety

Decision-Maker’s pragmatic distribution

‘true’ distribution

credal set

Bayes act based on       



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Second Example: logarithmic scoring rule

Safety

=H(1/3)



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

2. minimax optimal:  

Safety  & Optimality



Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

2. minimax optimal:  

3. “admissible”

Safety  & Optimality

1/3

“pretty adequate”



What about nonsymmetric losses? 

• ‘asymmetric’ means e.g. that if the car is behind 

door B, it is a Ferrari; if it is behind door C, it is a 

Fiat Panda

• Now pretending that Monty chooses by tossing a 

fair coin is neither safe nor minimax optimal!

• In our first example, we had safety under all loss 

functions that were chosen independently of 

observation

• In this example, we additionally need symmetry : 

this safety is strictly weaker (applies to strictly 

smaller set of loss functions) 



Maximum Entropy Monty?

• Natural question: can safe probabilities be understood 

as ‘maximum entropy’ probabilities?

• Answer: in some settings, inferring 𝑃∘ by MaxEnt is safe

for an interestingly large class of decision problems, in 

other settings it simply has no good safety properties 

Aside: a big frustration of mine…my first paper on safety-like 

notions was Maximum Entropy and the Glasses You are 

Looking Through G., Proceedings UAI 2000

This paper introduces ‘safe’, ‘risky’ and ‘silly’ uses of MaxEnt. 

By now, 21 years later, safety has come of age, but I’m still 

frustrated that that original paper was largely ignored…



Menu

1. Example 1: Marginals

• Extends to calibrated 𝑃∘

2. Example 2: Monty Hall 

• 𝑃∘ not a marginal/not calibrated, still safe

3. Example 3: Objective Bayes, Jeffreys’ Prior

4. A Unification of Bayesian, Imprecise Probability and 

Frequentist Ideas? 



Objective Bayes

• Model 𝒫∗ = {𝑃𝜃: 𝜃 ∈ Θ} for data 𝑌𝑛 = (𝑌1, … , 𝑌𝑛) ∈ 𝒴𝑛

• Bayesian statistics proceeds by

1. postulating prior distribution 𝑤 𝜃 on Θ …

2. …thus constructing joint distribution 𝑃 on Θ × 𝒴𝑛 with 

𝑃 𝜃 ∈ Θ′ = ′Θ׬ 𝑤 𝜃 𝑑𝜃 and 𝑃 𝑌𝑛 Θ = 𝜃 ≔ 𝑃𝜃(𝑌
𝑛)



Objective Bayes

• Model 𝒫∗ = {𝑃𝜃: 𝜃 ∈ Θ} for data 𝑌𝑛 = (𝑌1, … , 𝑌𝑛) ∈ 𝒴𝑛

• Bayesian statistics proceeds by

1. postulating prior distribution 𝑤 𝜃 on Θ …

2. …thus constructing joint distribution 𝑃 on Θ × 𝒴𝑛 with 

𝑃 𝜃 ∈ Θ′ = ′Θ׬ 𝑤 𝜃 𝑑𝜃 and 𝑃 𝑌𝑛 Θ = 𝜃 ≔ 𝑃𝜃(𝑌
𝑛)

• Objective Bayesians claim*: if we have no clear 

prior knowledge about 𝜃, we can use a special 

“default” prior 𝑤 that represents “ignorance” 

• For 1-dimensional Θ, often claimed to be Jeffreys’ prior

• Sir Jeffreys (‘46,’61), Bernardo (‘79), Berger, … 



Example: Bernoulli meets Jeffreys

Model 𝒫∗ = {𝑃𝜃: 𝜃 ∈ Θ} for data 𝑌𝑛 = (𝑌1, … , 𝑌𝑛) ∈ 𝒴𝑛

Bernoulli model:  𝑌𝑖 ∈ 0,1 , 𝑃𝜃 𝑌𝑛 = 𝜃𝑛1 1 − 𝜃 𝑛0

Jeffreys’ prior for Bernoulli is 𝑤J 𝜃 =
1

𝜃 1−𝜃 𝜋

Bayes marginal distribution becomes

𝑃J 𝑌
𝑛 = 1..0׬ 𝑤J 𝜃 𝜃𝑛1 1 − 𝜃 𝑛0 𝑑𝜃

𝜃

𝑤J 𝜃



Example: Bernoulli meets Jeffreys

Model 𝒫∗ = {𝑃𝜃: 𝜃 ∈ Θ} for data 𝑌𝑛 = (𝑌1, … , 𝑌𝑛) ∈ 𝒴𝑛

Bernoulli model:  𝑌𝑖 ∈ 0,1 , 𝑃𝜃 𝑌𝑛 = 𝜃𝑛1 1 − 𝜃 𝑛0

Jeffreys’ prior for Bernoulli is 𝑤J 𝜃 =
1

𝜃 1−𝜃 𝜋

Bayes marginal distribution becomes

𝑃J 𝑌
𝑛 = 1..0׬ 𝑤J 𝜃 𝜃𝑛1 1 − 𝜃 𝑛0 𝑑𝜃

Hard-core Objective Bayesian might say:  for any two 

random variables 𝑼,𝑽 that can be written as fn of 𝒀𝒏, 

reasonable to predict 𝑼 given 𝑽 with 𝑷𝐉(𝑼|𝑽). 𝜃

𝑤J 𝜃

But this would give for example:

𝑃J frequency of 1𝑠 ≤
1

10
≈ 10PJ(0.45 ≤ frequency of 1s ≤ 0.55)



Un-Safe Objective Bayes

• We have for large 𝑛,   

𝑃J frequency of 1𝑠 ≤
1

10
≈ 10PJ(0.45 ≤ frequency of 1s ≤ 0.55)

Thus, if you really want to follow the recommendation to 

predict with Jeffreys’ prior, you would be willing to play the 

following game: 10000 outcomes will be generated ; then: 

• If frequency of 1s is between 0.45-0.55, you pay 90$

• If between 0 and 0.05 you get 10$ 

• Otherwise nothing happens

Who in this zoom would actually want to play this game!?



• So, is Jeffreys’ prior all bad? No of course not.

• For example, we have the following safety-like property 

(important in model selection):

For all 𝜃∗ ∈ Θ, (i.e. all 𝑃∗ ∈ 𝒫∗), 

• Safe Probability can take the sting out of objective 

Bayes by ‘blocking’ some possible inferences but 

not others

• ...much more to say on safety and objective Bayes 

Safe Objective Bayes
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Bayes, Imprecise, Frequentist at 

the same time? 

• In this work we view a probability distribution primarily 

as a tool summarizing how you would act in various 

situations



Bayes, Imprecise, Frequentist at 

the same time? 

• In this work we view a probability distribution primarily 

as a tool summarizing how you would act in various 

situations (≈ choose between various options) 

• very (subjective) Bayesian in spirit! (Savage)

• but the non-Bayesian thing is the explicit restriction to a 

limited set of situations 



Bayes, Imprecise, Frequentist at 

the same time? 

• In this work we view a probability distribution primarily 

as a tool summarizing how you would act in various 

situations (≈ choose between various options) 

• very (subjective) Bayesian in spirit!

• but the non-Bayesian thing is the explicit restriction to a 

limited set of situations 

• The very definitions of safety ensure that under the

hood there are always sets of probabilities

• imprecise probability!

• …and the interpretation of 𝒫∗as possible ‘truths’ is 

frequentist….  



But: aren’t  we contradicting 

Ramsey, De Finetti, Savage, …?

Ramsey, De Finetti, Savage, Cox, Fishburn and many

others all gave strong reasons to act like a Bayesian.

e.g. when you advocate a non-Bayesian method, followers of De 

Finetti might say “but that is silly! I can make Dutch book against 

you!” 

• Meaning a set of gambles all of which you’d accept but in the 

end would guarantee you a sure loss



But: aren’t  we contradicting 

Ramsey, De Finetti, Savage, …?

Ramsey, De Finetti, Savage, Cox, Fishburn and many

others all gave strong reasons to act like a Bayesian.

e.g. when you advocate a non-Bayesian method, followers of De 

Finetti might say “but that is silly! I can make Dutch book against 

you!” 

• Meaning a set of gambles all of which you’d accept but in the 

end would guarantee you a sure loss

More generally they stipulate a set of innocuous looking axioms 

that every reasonable decision maker should obey.

They then show that adhering to the axioms implies you are a 

Bayesian. So it may seem safe probability contradicts these 

axioms! Does it!?!?



But: aren’t  we contradicting 

Ramsey, De Finetti, Savage, …?

“being a Bayesian” ≈ there must  a single (not a set!) distribution 𝑃∘

on 𝒳 ×𝒴 such that under every loss function 𝐿:𝒳 × 𝒴 ×𝒜 → ℝ , 

you estimate the loss incurred with action 𝑎 given 𝑋 = 𝑥 to be

…and hence always prefer to play the Bayes act relative to 𝑃∘|𝑋 =
𝑥 and 𝐿 , minimizing expected loss

With safe probability, for a given 𝑃∘ we are non-Bayesian in that we 

would block such an inference for some loss 𝐿 (e.g. Monty Hall: 

nonsymmetric 𝐿)



But: aren’t  we contradicting 

Ramsey, De Finetti, Savage, …?

“being a Bayesian” ≈ there must  a single (not a set!) distribution 𝑃∘

on 𝒳 ×𝒴 such that under every loss function 𝐿:𝒳 × 𝒴 ×𝒜 → ℝ , 

you estimate the loss incurred with action 𝑎 given 𝑋 = 𝑥 to be

…and hence always prefer to play the Bayes act relative to 𝑃∘|𝑋 =
𝑥 and 𝐿 , minimizing expected loss

With safe probability, for a given 𝑃∘ we are non-Bayesian in that we 

would block such an inference for some loss 𝐿 (e.g. Monty Hall: 

nonsymmetric 𝐿)

Alternatively, we can also set up safe probability such 

that we choose 𝑃∘ as a function of 𝐿 ! 



But: aren’t  we contradicting 

Ramsey, De Finetti, Savage, …?

• We can set up safe probability such that we choose 𝑃∘ as a 

function of 𝐿 ! 

• Then 𝑃∘ can be thought of as being conditional on 𝐿, and the 

same 𝑃∘ ∣ 𝑋 = 𝑥, ത𝐿 = 𝐿 is used for making all decisions. You are 

then acting like a proper Bayesian! 

• …even though you have may introduced dependencies (the 

choice of loss influencing the probabilities of outcomes 𝑌) that 

you do not really think are there – but that does not contradict 

any of the typical axioms! 

This argument is not water-tight yet (esp. not for Savage’s axioms)

Collaborations welcome!



Why develop Safe Probability?

• explains why people (and algorithms) sometimes get 

away with doing something that’s wrong (and 

sometimes don’t) 

• Clarifies much of the discussion between strict 

Bayesians, imprecise probabilists and frequentists 

(and points towards a unified view?) 



Why Safe Probability at PROGIC?

• explains why people (and algorithms) sometimes get 

away with doing something that’s wrong (and 

sometimes don’t) 

• Clarifies much of the discussion between strict 

Bayesians, imprecise probabilists and frequentists 

(and points towards a unified view?) 

• For logicians: may point towards new (?) pragmatic 

concept of truth (conditions)…

• For probabilists: does point towards interesting 

generalization of measure theory



Read/Do more?

• G., Safe Probability, Journal of Statistical Planning and 

Inference, 2018 (full theory, too complicated...)

• G. & J. Halpern, Making Decisions using Sets of Probabilties, 

Journal of AI Research, 2011 (‘pre-work’)

• G., Maximum Entropy and the Glasses you are Looking 

Through, Proceedings UAI 2000

• Appendix of G. and T. van Ommen: Inconsistency of 

Bayesian Inference under Misspecification, Bayesian 

Analysis, 2017

• ...more examples (e.g. optional stopping) on Friday!


