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Normality Structures

A normality structure is a tuple xS , E ,W ,ě,Ïy with:

1. S a non-empty set (of states),

2. E Ď PpSqztHu (the possible bodies of evidence)

3. W “ txs,Ey : s P E P Eu (the set of (centered) worlds),1

4. ě a preorder on W (read as ‘is at least as normal as’),

5. Ï an asymmetric, well-founded relation on W (read as ‘is
sufficiently more normal than’), such that,:

5.1 If w1 Ï w2, then w1 ě w2;
5.2 If w1 ě w2 Ï w3 ě w4, then w1 Ï w4.

1Throughout, when I write xs,Ey, I assume that this is in W .



Belief

Your beliefs at xs,Ey are all only those things true throughout
Rbpxs,Eyq, defined as follows:

Rbpxs,Eyq :“ ts 1 : s 1 P E& pDs2 : xs2,Ey Ï xs 1,Eyqu

‘Believe that the state is not much less normal/plausible than the
evidence requires it to be.’

Key innovation: the states left open are not just the most normal
ones, but also all that are not sufficiently less normal than these.
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Probability Structures

A probability structure is a tuple xS , E ,W ,Q,P, ty with:

1. S , E ,W as above,

2. Q (the question) a partition of S ,

3. P (the prior) a probability distribution over S with
PE pqq :“ Ppq|E q defined for all q P Q and E P E ,

4. t P p0, 1s (the threshold).



The Reduction, Part I

Let rssQ := the cell of Q containing s (the answer to Q at s).

normality as likeliness:
xs,Ey ě xs 1,Ey :“ PE prssQq ě PE prs

1sQq



The Reduction, Part II

Let τpxs,Eyq :“ PE pts
1 : xs,Ey ě xs 1,Eyuq – i.e., the probability,

given E , that things are no more normal than they are at xs,Ey.

sufficiency: xs,Ey Ï xs 1,Ey :“ 1´ τpxs 1,Eyq
τpxs,Eyq ě t

Intuitively: conditional on things being no more normal than they
are at xs,Ey, they are still ě t likely to be more normal than they
are at xs 1,Ey.



Upshot

Context supplies a question (a partition of the set of worlds); the
evidence produces a ranking of the complete answers to that
question (the cells of the partition) by their probability.

Consider disjunctions of complete answers that respect this
ranking, in that they contain any answer at least as probable as
any other they contain.2

The idea: the shortest such disjunction that has probability ě t
characterizes your beliefs.

2Compare Holgúın (ms), Dorst & Mandelkern (forthcoming).
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Bayesian Statistics

When dealing with continuous quantities, normality as
likeliness should be replaced with the analogous principle about
probability densities.3 sufficiency can stay as it is.

The result: your beliefs are characterized by the ‘highest posterior
density region’ — a way of summarizing a distribution popular in
Bayesian statistics (as a rival to frequentist confidence intervals).4

3See Goodman & Salow (2021, Appendix B).
4See e.g. Hyndman (1996).



The Stability Theory of Belief

In some ways this is similar to Leitgeb’s (2014) theory:

§ Beliefs are consistent and closed under logical consequence.

§ High probability is necessary for belief.

§ Belief is sensitive to a question.

In other ways it is different:

§ Leitgeb’s theory, but not ours, maintains that high probability
is sufficient for belief.

§ Leitgeb’s theory, but not ours, is consistent with strong
classical dynamic principles (e.g. AGM).

§ Our theory, but not Leitgeb’s, allows for non-trivial beliefs
even when the question is very fine-grained.
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Flipping for Heads

Flipping for Heads: You flip a fair coin until it lands heads,
observing the outcomes as they happen.

S “ t1, 2, . . . u (number of times coin will be flipped)

E “ ttk : k ě nu : n P Su

Pptnuq “ 2´n, t “ .99, Q “ ttsu : s P Su

Predictions:

xn,Ey ě xm,Ey iff n ě m; and xn,Ey Ï xm,Ey iff n ě m ` 7

You always believe that the coin will land heads within the
next 7 trials.



Racing for Heads I

Racing for Heads: Each of 10 coin flippers has a fair coin that
they will flip until it lands heads. You wonder what will happen.

If Q = how many times will coin i be flipped, then your beliefs
about coin i will be like your beliefs about a single coin in Flipping
for Heads. But you believe nothing about e.g.

§ how the other coins will land,

§ how many tails-landings there will be across all the coins,

§ how many trials there will be before every coin has landed
heads, or

§ how many coins will ever land heads on the same flip.



Racing for Heads II

But you can have non-trivial beliefs about these topics relative to other
natural values of Q:

Q which worlds
most normal

t min
tails

max
tails

min
trials

max
trials

same
end?

(i) exact
outcome

all coins land
heads first time

.75 0 13 1 14 ?

.95 0 18 1 19 ?

(ii) outcome
shape

6ˆ 1 flip, 3ˆ 2
flips, 1ˆ 3 flips

.75 1 15 2 8 no

.95 0 22 1 12 ?

(iii) how many
total tails

8 or 9 total
tails [tied]

.75 5 14 1 15 ?

.95 2 18 1 19 ?

(iv) how long
until over

ends on 4th

trial
.75 2 50 3 6 ?
.95 1 70 2 8 ?

(v) how many
end together

5 flippers get
heads at once

.75 3 8 2 8 no

.95 2 8 2 8 no
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Modelling Dynamics

The result of discovering p in xs,Ey is xs,E X py .



Preservation

preservation: If you believe p, and you don’t believe not-q,
you’ll still believe p upon discovering q.5

This fails in Flipping for Heads:

§ It’s consistent with your beliefs that the coin will land tails the
first time.

§ Discovering that it did leads you to give up your belief that it
won’t take more than 7 flips to land heads.

5‘Rational Monotonicity’ in Kraus et. al. (1990). Standard ordering
accounts invalidate this if the normality order isn’t total, which Ï isn’t.



Against Preservation

Counterexamples like this are very hard to deny:
§ Deny that you have any beliefs about what will happen?

§ Then it’s consistent with your beliefs that the coin lands tails
the first 1,000,000 times.

§ But in any realistic scenario, you should stop believing the coin
is fair when you discover that this happened.

§ So preservation still fails.

§ Taking multiple measurements of a quantity with an imperfect
measuring device (e.g. your weight with a scale), leads to
similar dynamics.6

6Goodman and Salow (ms)



Learning from the Expected

no learning from the expected: If you believe p, and you
don’t believe q, you still won’t believe q upon discovering p.7

This fails in a variant of Flipping for Heads:

§ Instead of observing the flips, you just discover (after the fact)
whether there were more than seven flips.

§ You already believe that there weren’t.

§ Upon discovering that there weren’t, you form a new belief
that there were no more than six.

A gloss: discovering p turns it from ‘inductive’ to ‘evidential’,
freeing up inductive resources to support further beliefs.

7‘Cut’ in Kraus et. al. (1990)



A Concern

Underlying this counterexample to no learning from the
expected is a failure of:

e/Ï independence:
xs,Ey Ï xs 1,Ey if and only if xs,E 1y Ï xs 1,E 1y.

A general tension:

§ e/Ï independence needs to fail if we want to reconcile
substantial beliefs in cases like Flipping for Heads with a
high probability requirement.

§ But without e/Ï independence, dynamics look very
unconstrained.



A Solution

But consider:

e/ě independence:
xs,Ey ě xs 1,Ey if and only if xs,E 1y ě xs 1,E 1y

Unlike e/Ï independence, this holds whenever all discoveries
about the state are wholly about Q, in the sense that they are
unions of cells of Q. Often, this will be a natural assumption.8

8But not when e.g. allowing de se questions, which also raise intuitive
problems for the principles below (Goodman & Salow 2021, Appendix C).



Principles

With e/ě independence, we get interesting principles that are
not valid on simple threshold views:9

no reversal: If you believe p and don’t believe not-q, you
won’t believe not-p upon discovering q.

preservation from the expected: If you believe both p
and q, you’ll still believe p upon discovering q.10

We also get principles not generally valid in systems that allow
non-total normality orders, e.g.

anticipation: If you won’t believe p upon discovering q,
and you won’t believe p upon discovering not-q, you already
don’t believe p.11

9Even their joint weakening no reversal from the expected is only
valid on simple threshold views if we require t ą .618.

10‘Cautious Monotonicity’ in Kraus et. al. (1990).
11‘Negation Rationality’ in Kraus et. al. (1990).



Conclusion

Modelling belief with two closely related normality orders, ě and
Ï, is really productive:

§ It makes room for a straightforward connection between
normality and probability.

§ It gives the option of imposing strong constraints (totality,
E-independence) on ě, which filter down into ‘golden mean’
intermediate-strength constraints on Ï.

§ The resulting dynamic principles are weaker than the (too
strong) AGM principles, but sufficiently substantive to be
worth studying.
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