Statistical Decidability in Confounded, Linear
Non-Gaussian Models

Throughout the 1990s, causal discovery algorithms were largely constraint-
based; such methods inferred causal structure exclusively on the basis of condi-
tional independence relationships among the observed variables [Spirtes et al.,
2000|. Beginning in the early 2000s, it was realized that algorithms could harness
other observable features of the underlying joint distribution (e.g., that noise
is additive) to infer causal structure |[Hoyer et al) [2009] [Peters et al., 2012,
Loh and Biihlmann| 2014]. For our purposes, especially impressive advances
have been made in the study of linear, non-Gaussian causal models (LINGAMs)
[Shimizu et al.l 2011} |[Hoyer et al.l [2008]. When the true model is LINGAM, then
the causal structure among all measured variables can be learned in the limit
[Shimizu et al.,[2006]. With further assumptions, variants of maximum-likelihood
estimation are uniformly consistent [Biihlmann et al. |2014].

Our main result is that the orientation of every edge in a LINGAM is
statistically decidable, even in the presence of confounding variables. This result
improves upon previous findings by (1) [Hoyer et al., |2008| and |Salehkaleybar
et al.l [2020] who show that edge orientation in LINGAMsS is identifiable in the
presence of confounding and (2) |Genin and Mayo-Wilson| 2020], who show that
orientation is statistically decidable in the absence of confounding.

Statistical decidability is a reliability concept that is stronger than consistency
(simpliciter) but weaker than uniform consistency |Genin, 2018|. A set of models
is statistically decidable if, for any « > 0, there is a consistent procedure that, at
every sample size, hypothesizes a false model with chance less than a. Roughly,
a statistical decision procedure exists when one can produce shrinking (1 — «)-
confidence sets around the true parameter. Uniform consistency is the stronger
requirement that one be able to determine the sample size a priori at which
one’s chances of identifying the true model (to a certain degree of approximation)
are at least 1 — «; statistical decidability requires no such pre-experimental
guarantees.

Although our result may appear to be a mere technical improvement upon
the work of [Hoyer et al.| |2008, Salehkaleybar et al.;|2020], it may have profound
implications for methodology in the biomedical sciences. In particular, our
main result raises serious questions about standard arguments for randomized
controlled-trials (RCTs), which are considered by many as the “gold standard”
of evidence for causal claims.

To defend RCTs, researchers often make two claims: (1) when an intervention
on a variable X is performed, the causal effect of X on any other measured
variable is identifiable because the influence of confounders is eliminate (at
least in expectation) [Hernan and Robins| [2020] and (2) the causal effect of one
variable on another is, in general, not identifiable from passive observation alone,



even if confounding is assumed not to exist. In this context, identifiability means
that if two models M; and M, disagree about the effect that X has on some
variable Y, then M; and Ms assign different probabilities to the possible data
sets that might be observed when an intervention on X is performed. In general,
a partition of statistical models is called identifiable if, whenever two models
M; and M belong to different partition cells, they assign different probability
distributions to the observable data.

Identifiability is a necessary condition for discovery: if identifiability fails, two
distinct models may be indistinguishable no matter how much data is collected,
and those models may provide radically different answers to some question of
interest. But identifiability is far from sufficient, either in a theoretical sense
or practical one. When a set of statistical models is identifiable, there may be
no statistically consistent procedure |Gabrielsen) [1978], let alone a statistical
decision procedure in the sense we have described above. Thus, our main result
suggests that, in the absence of stronger reliability guarantees, RCTs cannot be
defended as superior to passive observation if researchers have good reason to
believe the underlying model is LINGAM.
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