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Introduction

Knowledge Graph: Definition [Hogan et al., 2021]

A graph of data intended to convey knowledge of the real world

conforming to a graph-based data model

nodes represent entities of interest

edges represent potentially different relations between these entities

data graph potentially enhanced with schema

KGs: Main Features

grounded on the Open World Assumption (OWA)

ontologies employed to define and reason about the semantics of
nodes and edges

very large data collections

suffer of incompleteness and noise

since often result from a complex building process

RDF, RDFS, OWL representation languages will be assumed
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Machine Learning & Knowledge Graphs



Introduction

Two perspectives:

KG as input to ML

Goal: improving the performance in many learning tasks, e.g. QA,
image classification, instance disambiguation, etc.

ML as input to KG
Goal: improving the KG itself

enriching the schema/ontology
creating new facts
creating generalizations
prototyping
improving the size, coverage, depth and accuracy of KGs → reducing
their production costs
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Introduction

Machine Learning: the study of systems that improve their behavior over
time with experience [Mitchell, 1997; MacKay, 2002; Flach, 2012; Murphy, 2012]

experience:

interactions with the world
set of observations or examples
internal states and processes

Approaches: [Luger, 2005]

symbol-based
connectionist / neurally inspired / numeric
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Introduction

Symbol-Based Learning

uses symbols for representing entities and relationships of a problem
domain (observations/examples)

infer novel, valid and useful generalizations of examples

that provide new insights into the data/examples
are ideally readily interpretable by the user

by searching thought possible generalizations expressed with symbols

Induction typically adopted
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Introduction

Neurally Inspired Learning

represents knowledge as patterns of activity in networks of small,
individual processing units

needs to encode knowledge into numerical quantities in the network

learns by modifying / adapting the network structure and weights in
response to incoming (training) data

does not learn by adding representation to the KB
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ML as input to KG



Introduction

Numeric-based methods

highly scalable

schema level information and
reasoning capabilities almost
disregarded

⇓
Knowledge Graph Refinement

Link Prediction: predicts
missing links between entities

Triple Classification: assesses
statement correctness in a KG

Symbol-based methods

able to exploit background
knowledge and (deductive)
reasoning capabilities

limited in scalability

⇓
Ontology Mining

All activities that allow for
discovering hidden knowledge
from ontological KBs

[d’Amato, 2020]
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Introduction

Numeric-based methods

highly scalable

schema level information and
reasoning capabilities almost
disregarded

⇓
Knowledge Graph Refinement

Link Prediction: predicts
missing links between entities

Triple Classification: assesses
statement correctness in a KG

↗
Next Talk on Thursday

Symbol-based methods

able to exploit background
knowledge and (deductive)
reasoning capabilities

limited in scalability

⇓
Ontology Mining

All activities that allow for
discovering hidden knowledge
from ontological KBs

[d’Amato, 2020]
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Symbol-based Methods

for Ontology Mining



Symbol-based methods for Ontology Mining

Ontologies act as a shared vocabulary for assigning data semantics

Largely adopted in Semantic Web with the goal of making data on the Web
machine understandable

Examples of existing real ontologies

Schema.org

Gene Ontology

Foundational Model of Anatomy ontology

Financial Industry Business Ontology (by OMG Finance Domain Task Force)

GoodRelations

. . .
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Symbol-based methods for Ontology Mining Motivation

OWL standard language ⇒ Description Logics (DLs) theoretical foundation

Ontologies equipped with deductive reasoning capabilities ⇒ allowing to make
explicit, knowledge that is implicit within them

Deduction:
”Crédit du Nord”,
”Crédit Agricole”

are also Company
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Symbol-based methods for Ontology Mining Motivation

Question: would it be possible to discover new/additional knowledge by
exploiting the evidence coming from the assertional data?

Deduction:
”Crédit du Nord”,
”Crédit Agricole”

are also Company

Incompleteness

UniCredit is a Bank

C. d’Amato (UniBa) ML and KG: issues to be considered Progic 2021 15 / 72



Symbol-based methods for Ontology Mining Motivation

Deduction:
”Crédit du Nord”,
”Crédit Agricole”

are also Company

Inconsistency

Mellon cannot be
a Person and
a Bank
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Symbol-based methods for Ontology Mining Motivation

Deduction:
”Crédit du Nord”,
”Crédit Agricole”

are also Company

Noise

Person ≡ ¬Bank
missing
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Symbol-based methods for Ontology Mining Motivation

ML methods adopted to discover new/additional knowledge by exploiting
the evidence coming from the assertional data [d’Amato et al., 2010; d’Amato,

2020]

grounded on inductive approach

Deduction:
”Crédit du Nord”,
”Crédit Agricole”

are also Company

Noise

Person ≡ ¬Bank
missing
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Symbol-based methods for Ontology Mining Motivation

Induction vs. Deduction

Deduction (Truth preserving)

Given:

a set of general axioms

a proof procedure

Draw:

correct and certain
conclusions

Induction (Falsity preserving)

Given:

a set of examples

Determine:

a possible/plausible
generalization covering

the given
examples/observations
new and not previously
observed examples
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Ontology Mining Tasks

Instance Retrieval (Instance Level)

Ontology Enrichment (Schema Level)

from an inductive perspective



Ontology Mining Tasks

Instance Retrieval (Instance Level)

Ontology Enrichment (Schema Level)

from an inductive perspective



Instance Retrieval as

a Classification Problem



Instance Retrieval as a Classification Problem

Introducing Instance Retrieval I

Instance Retrieval → Finding the extension of a query concept

Instance Retrieval (Bank) = {”Crédit du Nord”, ”Crédit Agricole”}
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Instance Retrieval as a Classification Problem

Introducing Instance Retrieval I

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Instance Retrieval as a Classification Problem

Introducing Instance Retrieval II

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Instance Retrieval as a Classification Problem

Introducing Instance Retrieval III

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Instance Retrieval as a Classification Problem

Idea

Casting the problem as a classification problem

assess the class membership of individuals in a DL KB w.r.t. the query
concept

Similarity-based methods mostly adopted ⇒ efficient and noise tolerant

Issues: State of art classification methods cannot be straightforwardly
applied

generally applied to feature vector representation
→ upgrade DL expressive representations

implicit Closed World Assumption made in ML
→ cope with the Open World Assumption made in DLs

classes considered as disjoint
→ cannot assume disjointness of all concepts
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Instance Retrieval as a Classification Problem

Adopted Solutions:

Defined new semantic similarity measures for
DL representations [d’Amato, 2007]

to cope with the high expressive power of DLs
to deal with the semantics of the compared objects (concepts,
individuals, ontologies)
to convey the underlying semantics of KB

Formalized a set of criteria that a similarity function has to satisfy for
being defined semantic [d’Amato et al., 2008a]

Definition of the classification problem taking into account OWA

Multi-class classification problem decomposed into a set a smaller
classification problems
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Instance Retrieval as a Classification Problem

Definition (Problem Definition)

Given:

a populated ontological knowledge base KB = (T ,A)

a query concept Q

a training set with {+1,−1, 0} as target values

Learn a classification function f such that: ∀a ∈ Ind(A) :

f (a) = +1 if a is instance of Q

f (a) = −1 if a is instance of ¬Q
f (a) = 0 otherwise (unknown classification because of OWA)

Dual Problem

given an individual a ∈ Ind(A), tell concepts C1, . . . ,Ck in KB it belongs to

the multi-class classification problem is decomposed into a set of ternary
classification problems (one per target concept)
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Instance Retrieval as a Classification Problem

Developed methods

Pioneering the Problem

relational K-NN for DL KBs [d’Amato et al., 2008b]

Improving the efficiency

kernel functions for kernel methods to be applied to DLs KBs [Fanizzi and

d’Amato, 2006; Fanizzi et al., 2012a; Bloehdorn and Sure, 2007]

Scaling on large datasets

Statistical Relational Learning methods for large scale and data
sparseness [Huang et al., 2010; Minervini et al., 2015]
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Instance Retrieval as a Classification Problem

Example: Nearest Neighbor Classification

query concept: Bank k = 7
target values standing for the class values: {+1, 0,−1}

xq

+1

+1

+1

+1

+1

−1

−1
+1

−1
+1

0

0

0

0

0

query individual

class(xq)← ?
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Instance Retrieval as a Classification Problem

Example: Nearest Neighbor Classification

query concept: Bank k = 7
target values standing for the class values: {+1, 0,−1}

xq

+1

+1

+1

+1

+1

−1

−1
+1

−1
+1

0

0

0

0

0

query individual

class(xq)← +1
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Instance Retrieval as a Classification Problem

On evaluating the Classifier

Problem: How evaluating classification results?

Inductive Classification compared with a standard reasoner (Pellet)

Query concepts from ontologies publicly available considered

Registered mismatches: Induction: {+1,−1} - Deduction: no results

Evaluated as mistake if precision and recall were used while it could
turn out to be a correct inference when judged by a human

Defined new metrics to distinguish induced assertions from mistakes

Reasoner
+1 0 -1

Inductive +1 M I C
Classifier 0 O M O

-1 C I M

M Match Rate O Ommission Error Rate
C Commission Error Rate I Induction Rate
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Instance Retrieval as a Classification Problem

Lesson Learnt from experiments

Commission error almost zero on average

Omission error rate very low and only in some cases

Not null for ontologies in which disjoint axioms are missing

Induction Rate not zero

new knowledge (not logically derivable) induced ⇒ can be used for
semi-automatizing the ontology population task
induced knowledge ⇒ individuals are instances of many concepts and
homogeneously spread w.r.t. the several concepts.

match commission omission induction
SWM 97.5 ± 3.2 0.0 ± 0.0 2.2 ± 3.1 0.3 ± 1.2

LUBM 99.5 ± 0.7 0.0 ± 0.0 0.5 ± 0.7 0.0 ± 0.0
NTN 97.5 ± 1.9 0.6 ± 0.7 1.3 ± 1.4 0.6 ± 1.7

Financial 99.7 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2
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Instance Retrieval as a Classification Problem

Research Directions to Investigate Further

Multi-Label Classification

individuals can be instance of more than one concept at the same
time [Melo and Paulheim, 2019; Peixoto et al., 2016]

Hierarchical Classification

Particularly appropriate for type prediction [Melo et al., 2016, 2017]

Ensemble methods

only boosting has been preliminarily applied [Rizzo et al., 2015a; Fanizzi

et al., 2019]

Regression

to be exploited for predicting missing values of datatypes
properties [Fanizzi et al., 2012b; Rizzo et al., 2016]
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Ontology Mining Tasks
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Ontology Enrichment as a Concept Learning Problem

On Learning Concept Descriptions I

Goal: Learning descriptions for a given concept name / expression

Example : Man ≡ Human uMale

Question: How to learn concept descriptions automatically, given a set of
individuals?

Idea

Regarding the problem as a supervised concept learning task

Supervised Concept Learning:

Given a training set of positive and negative examples for a concept,

construct a description that will accurately classify whether future examples
are positive or negative.

C. d’Amato (UniBa) ML and KG: issues to be considered Progic 2021 38 / 72



Ontology Enrichment as a Concept Learning Problem

On Learning Concept Descriptions II

Definition (Problem Definition)

Given

the KB K as a background knowledge
a subset pos of individuals as positive examples of C
a subset neg of individuals as negative examples of C

Learn

a DL concept description D so that
the individuals in pos are instances of D while those in neg are not
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The Learning Process:

Learning as Search



Ontology Enrichment as a Concept Learning Problem

How Does Relational Learning Work?

Symbolic ML techniques essentially search a space of possible hypothesis
Lh (e.g. patterns, models, regularities) [De Raedt, 2008]

Depending on the task, different search algorithms and principles
apply

complete search strategy applicable
heuristic search method (e.g. hill climbing)

easy way: generate-and-test algorithm

näıve and inefficient
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Ontology Enrichment as a Concept Learning Problem

A Generate-and-Test Algorithm

A (trivial) algorithm based on a generate-and-test technique is the
enumeration algorithm

for each possible hypothesis h checks if h satisfies a given quality
criterion Q wrt the data D

for each h ∈ Lh do

if Q(h,D) = true then

output h
end if

end for

Properties

whenever a solution exists, the enumeration algorithm will find it

it can only be applied if the hypotheses language Lh is enumerable
the algorithm searches the whole space → inefficient

it is advantageous to structure the search space, according to generality
allowing for its pruning
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Ontology Enrichment as a Concept Learning Problem

Usually logical entailment used as for generality relation

a more general hypothesis logically entails the more specific one

a more specific hypothesis is a logical consequence of the more
general one

Definition (generality)

Let h1, h2 ∈ Lh. Hypothesis h1 is more general than (or
equivalent) hypothesis h2 , h1 � h2, iff all examples covered
by h2 are also covered by h1, i.e., c(h2) ⊆ c(h1)

We also say that

h2 is a specialization of h1

h1 is a generalization of h2

h1 is a proper generalization of h2, h1 ≺ h2

when h1 � h2

and h1 covers examples not covered by h2
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Ontology Enrichment as a Concept Learning Problem

Space traversed in:

a general-to-specific strategy:

the algorithm starts from the
most general hypothesis

then repeatedly specializes
mapping hypothesis
/patterns onto a set of
specializations

a specific-to-general strategy

Notice that the � is transitive and reflexive; → it is a quasi-order

not anti-symmetric since there may exist several hypotheses that
cover exactly the same set of examples: syntactic variants

undesirable: they introduce redundancies in the search space
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Ontology Enrichment as a Concept Learning Problem

Monotonicity I

The generality relation imposes a useful structure on the search space
provided that the quality criterion involves some properties:

Definition (monotonicity of the criteria)

A quality criterion Q is monotonic iff

∀s, g ∈ Lh,∀D ⊆ Le : (g � s) ∧ Q(g ,D)→ Q(s,D)

It is anti-monotonic iff

∀s, g ∈ Lh,∀D ⊆ Le : (g � s) ∧ Q(s,D)→ Q(g ,D)

C. d’Amato (UniBa) ML and KG: issues to be considered Progic 2021 45 / 72



Ontology Enrichment as a Concept Learning Problem

Monotonicity II

Properties that directly follow from the definitions of monotonicity and
anti-monotonicity:

Property (prune generalizations)

If a hypothesis h does not satisfy a monotonic quality
criterion then none of its generalizations will

Property (prune specializations)

If a hypothesis h does not satisfy an anti-monotonic
quality criterion then none of its specializations will
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Ontology Enrichment as a Concept Learning Problem

Monotonicity III

prune specializations prune generalizations
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Ontology Enrichment as a Concept Learning Problem

Refinement Operators I

How can be the search space Lh traversed?

Many ML algorithms are based on refinement operators

generating sets of specializations (or generalizations) of given
hypotheses

Definition

A generalization operator ρg : Lh → 2Lh is a function such that

∀h ∈ Lh : ρg (h) ⊆ {h′ ∈ Lh | h′ � h}

Dually, a specialization operator ρs : Lh → 2Lh is a function such that

∀h ∈ Lh : ρs(h) ⊆ {h′ ∈ Lh | h � h′}
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Ontology Enrichment as a Concept Learning Problem

Refinement Operators II

Properties
defined for specialization op’s (corresponding definitions for generalization op’s easily
obtained)

ρ is an ideal operator for Lh iff
∀h ∈ Lh : ρ(h) = min({h′ ∈ Lh | h ≺ h′})

it returns all children for a node in the Hasse diagram
proper refinements, not a syntactic variant of the original hypothesis

often are used in heuristic search algorithms

ρ is an optimal operator for Lh iff for all h ∈ Lh there exists exactly
one sequence of hypotheses > = h0, h1, . . . , hn = h ∈ Lh such
that hi ∈ ρ(hi−1) for all i

used in complete search algorithms

An operator for which there exists at least one sequence from > to
any h ∈ Lh is called complete

An operator for which there exists at most one such sequence is
non-redundant
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Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm I

Adapting the enumeration algorithm to employ the refinement operators:

Queue ← Init
Th← ∅
while not Stop do

Delete h from Queue
if Q(h,D) then

Th← Th ∪ {h}
Queue ← Queue ∪ ρ(h)

end if

Queue ← Prune(Queue)
end while

return Th
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Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm II

Observations. many parameters determining the behavior

Init determines the starting point of the search algorithm

The initialization may yield one or more initial hypotheses
Most algorithms start either at > and only specialize (the so-called
general-to-specific systems), or at ⊥ and only generalize (the
specific-to-general systems)

Delete determines the search strategy

first-in-first-out: breadth-first search
last-in-first-out: depth-first search
best hypothesis (according to some criterion or heuristic): best-first
algorithm

ρ determines the size and nature of the refinement steps through the
search space

Stop determines when the algorithm halts

C. d’Amato (UniBa) ML and KG: issues to be considered Progic 2021 51 / 72



Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm III

Some algorthms compute all elements, k elements or an
approximation of an element satisfying Q

if all elements are desired, Stop equals Queue = ∅
when k elements are sought, it is |Th| = k

Some algorithms Prune candidate hypotheses from Queue

heuristic pruning prunes away parts of the search space that appear to
be uninteresting
sound pruning prunes away parts of the search space that cannot
contain solutions

As with other search algorithms in AI:

complete algorithms compute all elements of Th(Q,D,Lh)
heuristic algorithms aim at computing one or a few hypotheses that
score best w.r.t. a given heuristic

not guaranteeing that the best hypotheses are found
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Ontology Enrichment as a Concept Learning Problem

DL Concept Learning – Problem Definition I

given a KB K = 〈T ,A〉
a target concept C
a set of training instances partitioned as examples and
counterexamples E = E+ ∪ E− for C

find a description D for C generalizing E, C ≡ D,
that maximizes the accuracy w.r.t. the positive and negative
examples

Possible Issues:

Negative examples: ML grounded on CWA, DLs based on OWA

Learning from positive examples only if negative examples missing

Suitable refinement operators needed

Evaluating results: metrics, unbalanced setting
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Ontology Enrichment as a Concept Learning Problem

DL Concept Learning – Problem Definition II

Accuracy

D correctly entails at least (1− ε)|E| of the assertions on examples
regarding their membership to C :
∀e ∈ E+ : K t {D} |= C (e) and
∀e ∈ E− : K t {D} 6|= C (e)

stronger alternative:
∀e ∈ E− : K t {D} |= ¬C (e)

Variant: separate ε+ and ε−
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Ontology Enrichment as a Concept Learning Problem

Refinement Operators

Randomized recursive refinement operator ρ
C ′ ∈ ρ(C )

1 C ′ = C u A

2 C ′ = C u ¬A
3 C ′ = C u ∀R.>
4 C ′ = C u ∃R.>
5 C ′ = C1 u · · · u B u · · · u Cn

if C = C1 u · · · u A u · · · u Cn and B v A

6 C ′ = C1 u · · · u ¬B u · · · u Cn

if C = C1 u · · · u ¬A u · · · u Cn and A w B

7 C ′ = C1 u · · · u ∃R.D u · · · u Cn

if C = C1 u · · · u ∃R.E u · · · u Cn and D ∈ ρ(E )

8 C ′ = C1 u · · · u ∀R.D u · · · u Cn

if C = C1 u · · · u ∀R.E u · · · u Cn and D ∈ ρ(E )
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Ontology Enrichment as a Concept Learning Problem

Developed Methods for Supervised Concept Learning

Separate-and-conquer approach
YinYang [Iannone et al., 2007]

DL-FOIL [Fanizzi et al., 2008, 2018]

DL-Learner [Lehmann and Hitzler, 2010]

Celoe [Lehmann et al., 2011]

DL-FOCL [Rizzo et al., 2020]

Divide-and-conquer approach
TermiTIS [Fanizzi et al., 2010]

Parcel [Tran et al., 2012]

SPaCEL [Tran et al., 2017]

TermiTIS – Extensions
Pruning Methods [Rizzo et al., 2017b,a] - simplify complexity & avoid
overfitting
Terminological Random Forests TRFs [Rizzo et al., 2015a] - tackling also
the class-imbalance problem
Evidential TDTs and TRFs [Rizzo et al., 2018, 2015b] - based on the
Dempster-Shafer Theory(DST): a general framework for reasoning with
uncertainty

C. d’Amato (UniBa) ML and KG: issues to be considered Progic 2021 57 / 72



Ontology Enrichment as a Concept Learning Problem

DL-FOIL I

Problem: simple generate-and-test algorithms may be inefficient

DL-FOIL adopt a heuristic sequential covering algorithm [Fanizzi et al., 2008;

Fanizzi, 2011]

general-to-specific search

starting from >
repeat (cover as many positives as possible)

if non positives are covered
repeat

find heuristically the best refinement
(not to cover them yet still covering as many positives as possible)
add refinement as a disjunct partial def.

until only positives covered

until all positives covered
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Ontology Enrichment as a Concept Learning Problem

DL-FOIL II

C1

C′
1

+

−

+

−

−

+

+
+

−

−

+

−

+

−

−

C2

C′
2

+

−

+

−

−

+

+

+

−

−

−

+

−

C1 = MasterStudent C ′1 = MasterStudent u ∃worskIn.>
C2 = BachelorStudent C ′2 = BachelorStudent u ∃worskIn.>
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Ontology Enrichment as a Concept Learning Problem

DL-FOIL III

Heuristic function: Gain

g(D0,D1) = p1 ·
[

log
p1

p1 + n1 + u1
− log

p0

p0 + n0 + u0

]
where

p1|n1|u1 number of exs covered by the specialized def. D1

p0|n0|u0 number of exs covered by the former (partial) def. D0

+ correction via Laplace smoothing
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Ontology Enrichment as a Concept Learning Problem

On Evaluating the Learnt Concept Descriptions

Publicly available ontologies considered

A number (30) of satisfiable randomly generated concepts considered

Positive and negative examples collected for each concept by using a
deductive reasoner

Running concept learning on the collected positive and negative
examples

Inductive classification performed on the learnt concept descriptions
match commission omission induction

ontology rate error rate error rate rate
BioPax 76.9 ± 15.7 19.7 ± 15.9 7.0 ± 20.0 7.5 ± 23.7

NTN 78.0 ± 19.2 16.1 ± 4.0 6.4 ± 8.1 14.0 ± 10.1
Financial 75.5 ± 20.8 16.1 ± 12.8 4.5 ± 5.1 3.7 ± 7.9
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Ontology Enrichment as a Concept Learning Problem

Examples of Learned Descriptions with DL-FOIL

BioPax
induced:
Or( And( physicalEntity protein) dataSource)

original:
Or( And( And( dataSource externalReferenceUtilityClass)

ForAll(ORGANISM ForAll(CONTROLLED phys icalInteraction)))

protein)

NTN
induced:
Or( EvilSupernaturalBeing Not(God))

original:
Not(God)

Financial
induced:
Or( Not(Finished) NotPaidFinishedLoan Weekly)

original:
Or( LoanPayment Not(NoProblemsFinishedLoan))
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Ontology Enrichment as a Concept Learning Problem

Lesson Learnt from Experiments

Relatively small ontological KBs adopted ⇒ scalability needs to be
improved

Suitable concept descriptions learned ⇒ validation by expert
recommended for adding axioms to the KB

approximated descriptions may be learned depending of the threshold
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Ontology Enrichment as a Concept Learning Problem Conclusions

Conclusions

Machine Learning methods

could be usefully exploited for ontology mining

suitable also in case of incoherent/noisy KBs

can be seen as an additional layer on top of deductive reasoning
for new/additional forms of approximated reasoning capabilities

Adopting ML solutions could be simple in principle

often instantiating an existing learning schema is just needed

Alert

understand the meaning of each component for instantiating a learning
schema correctly
it could be the case that some components require newly developed
solutions

e.g. new similarity measure for expressive representations, suitable
refinement operators
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That’s all!

Questions ?

Claudia d’Amato
Computer Science Department
University of Bari, Bari - Italy
email:
claudia.damato@uniba.it
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