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Causal Discovery 

Causal Structure
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Counterfactual and Hypothetical Predictions
Orthodox statistics attempts to estimate only the distribution from which one 
samples.

Causal discovery attempts to estimate and predict outcomes of hypothetical (or 
counterfactual) interventions, which are features of distributions other than those 
from which one samples.



Identifiability vs. Success Criteria (e.g. Consistency)
Researchers often prove a set of causal models is identifiable, i.e., that different 
models give rise to different sampling distributions.

But identifiability doesn’t guarantee the existence of consistent estimator, i.e., a 
method that produces increasingly accurate estimates with increasing probability 
(Gabrielsen 1978).

○ Trivial Example:  Estimating Bernoulli parameter with the discrete metric.

Identifiability is a relation between models/parameters and distributions; it is not a 
success criteria for estimators (like consistency).

Genin, Arne (1978). “Consistency and Identifiability,” Journal of Econometrics.  8. 261-263. 

https://sites.google.com/view/naci2021/home


Success Criteria
Most research focuses on only two asymptotic, success/reliability criteria for estimators:

○ (Pointwise) consistency/convergence - Estimates become more accurate with 
increasing probability, but there’s no bound on how much data might be 
necessary.

○ Uniform consistency - One can name, a priori, how much data is necessary to 
achieve particular error bounds with particular probabilities.



Arithmetical Hierarchy vs. Statistical Hierarchy

 

Computability Theory Statistics

Known bound on number of computational 
steps before terminating

Uniform consistency

Δ0
2    i.e.,  “Trial and Error predicates”  

(Putnam 1965)
Consistency

Putnam, Hilary . “Trial and Error Predicates and a Solution to a Problem of Mostowski.” Journal of Symbolic 
Logic 7, 30 (1) 1965.



The Linear Gaussian Model
Theorem (Spirtes et al., 2001). When  

1. noise terms are independent and Gaussian,
2. functional relationships are linear and a-cyclic and
3. there are no unobserved confounders,

it is possible to converge (pointwise) to the Markov equivalence class of the 
DAG generating the data.



The LiNGAM Model
Theorem (Shimizu et al., 2006). When  

1. noise terms are independent and non-Gaussian,
2. functional relationships are linear and a-cyclic and
3. there are no unobserved confounders,

it is possible to converge (pointwise) to the DAG generating the data.

Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, Aapo, and Antti Kerminen. “A Linear Non-Gaussian Acyclic Model for Causal 
Discovery.” Journal of Machine Learning Research 7, no. 72 (2006): 2003–30.



Carnap’s Critique of Consistency

“Reichenbach is right … 

any procedure, which does not [converge in the limit] is 
inferior to his rule of induction. 

However, … the same holds for an infinite number of other 
rules of induction ….”

 



Carnap’s Critique of Consistency

“... therefore we need a more general and stronger 
method for examining and comparing any two given rules of 
induction.”

On Inductive Logic, 1945.

 



Pitfalls of Pointwise
Further, pointwise convergence is compatible with all kinds of short run behavior. 

Kelly, Kevin T, and Conor Mayo-Wilson (2010). “Causal Conclusions That Flip Repeatedly and Their Justification,” Proceedings of the 26th 
Conference on Uncertainty in Artificial Intelligence (UAI 2010). https://arxiv.org/abs/1203.3488v1

https://arxiv.org/abs/1203.3488v1


Pitfalls of Pointwise
If noise is Gaussian, causal conclusion can flip arbitrarily often as data 
accumulates. 

Kelly, Kevin T, and Conor Mayo-Wilson (2010). “Causal Conclusions That Flip Repeatedly and Their Justification,” Proceedings of the 26th 
Conference on Uncertainty in Artificial Intelligence (UAI 2010). https://arxiv.org/abs/1203.3488v1

https://arxiv.org/abs/1203.3488v1


Uniform Convergence is Impossible
Shimizu 2006 provide it is possible to converge (pointwise) to the DAG generating 
the data in the LiNGAM framework.

But uniform convergence to the true DAG is provably impossible in the LiNGAM 
framework. 
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Arithmetical Hierarchy vs. Statistical Hierarchy

 

Computability Theory Statistics

Known bound on number of computational 
steps before terminating

Uniform consistency

Decidable/Recursive - Δ0
1 Statistically Decidable - Consistency with 

bounded probability of error at every 
sample size

Δ0
2    i.e.,  “Trial and Error predicates”  

(Putnam 1965)
Consistent estimator exists

Putnam, Hilary . “Trial and Error Predicates and a Solution to a Problem of Mostowski.” Journal of Symbolic 
Logic 7, 30 (1) 1965.



Statistical Questions
Let M be a set of statistical models.

M



Statistical Questions
A question Q, partitioning M into a countable set of answers.

Q



Statistical Questions
A relevant response is a union of answers.
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A relevant response is a union of answers.
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A relevant response is a union of answers.

Q



Statistical Questions
If M ∈ M, 
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Statistical Questions
If M ∈ M, let QM be the answer true in M. 
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Statistical Questions
If M ∈ M, 
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Statistical Questions
If M ∈ M, let PM be the distribution induced by M over observables. 
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Statistical Solution
A set of measurable functions (Tn) is a method if each one is a function from 
samples of size n to relevant responses (unions of answers).



Statistical Solution
A method (Tn) is a solution to Q iff for all M ∈ M, 

● PM(Tn = QM) →1  as n →∞.



Statistical Decision

A method (Tn) is an α-decision procedure for Q iff it is a solution to Q and

● for all sample sizes n,  PM( QM  ⊈ Tn) < α. 

A question Q is statistically decidable iff it has an α-decision procedure for all α > 0.



Progressive Solutions

A method (Tn) is a progressive solution for Q iff it is a solution to Q and

● for all sample sizes n1 < n2 ,  PM( Tn1 = QM ) < PM( Tn2 = QM ).  



α-Progressive Solutions
A solution to Q  (Ln) is α-progressive iff for all M in W and n1 < n2,

● PM( Ln1 = QM ) < PM( Ln2 = QM ) + α.

Problem Q is progressively solvable iff it has an α-progressive solution for all α > 0.
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LiNGAM Questions
● Let Lngd be the set of all LiNGAM models on d observable variables.

● Let Lngd
c  ⊆ Lngd be the set of all models with causal coefficients bounded in 

absolute value by c.

       (Suffices to let c be the number of particles in the universe.)



LiNGAM Questions
● Mi➝j⊆ Lngd

c 
 be the set of all models with Xi ➝ Xj,

● Mioj⊆ Lngd
c 

 be the set of all models with Xi, Xj have no edge between them.

  



Main Results

Thm. The orientation question { Mi➝j ,  Mi➝j } is statistically decidable.

Thm. The orientation question  { Mioj, Mi➝j ,  Mi➝j } is progressively solvable.

Thm. The DAG identification question { MG : G ∈ DAGd } is progressively 
solvable.



Main Results

Thm. The orientation question { Mi➝j ,  Mi➝j } is statistically decidable.

Thm. The orientation question  { Mioj, Mi➝j ,  Mi➝j } is progressively solvable.

Thm. The DAG identification question { MG : G ∈ DAGd } is progressively 
solvable.

Flipping is Avoidable! 



Existing algorithms make unnecessary mistakes/flips
● E.g., We applied Direct-LiNGAM to data from the model X1→ X2 → X3 where

○ X1 is uniform on {1,2…, 20}, 
○ X2=X1+e1 & X3=X2+e2, where e1 and e2 are independent Bernoulli variables with parameter ½.

● Moral:  Direct-LiNGAM orients edges when evidence is weak.  Our main 
results show that algorithms could wait until evidence is strong enough to 
avoid reversing conclusions reached at earlier sample sizes. 

Sample Size X2→ X3 X3→ X2

50 55% 45%

5000 92% 8%



LiNGAM + Confounding - Unfaithfulness 
Theorem (Salehkaleybar et al., 2020). When  

1. noise terms are independent and non-Gaussian,
2. functional relationships are linear and a-cyclic,
3. there may be unobserved confounders, but
4. there are no cancelling paths (faithfulness),

then causal relationships between observed variables are identified.

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." Journal of Machine 
Learning Research 21.39: 1-24.



LiNGAM + Confounding - Unfaithfulness 
Theorem (Salehkaleybar et al., 2020). When  

1. noise terms are independent and non-Gaussian,
2. functional relationships are linear and a-cyclic,
3. there may be unobserved confounders, but
4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." Journal of Machine 
Learning Research 21.39: 1-24.

But how identified are they, really?



Good News 
Theorem (Genin, 2021). When  

1. noise terms are independent and non-Gaussian,
2. functional relationships are linear and a-cyclic,
3. there may be unobserved confounders, but
4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables can be 
consistently identified.

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” Neglected 
Assumptions in Causal Discovery Workshop, ICML 2021.

https://sites.google.com/view/naci2021/home
https://sites.google.com/view/naci2021/home


Bad News 
Theorem (Genin, 2021). When  

1. noise terms are independent and non-Gaussian,
2. functional relationships are linear and a-cyclic,
3. there may be unobserved confounders, but
4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are not 
decidable.

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” Neglected 
Assumptions in Causal Discovery Workshop, ICML 2021.

https://sites.google.com/view/naci2021/home
https://sites.google.com/view/naci2021/home


Bad News 
Flipping returns when we allow for unobserved confounders. 

Although causal orientation is a solvable problem (assuming faithfulness), it is 
no longer decidable. 

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” submitted.



Bad News 
Let U1, U2 be independent, non-Gaussian. Let Z1,Z2 be independent Gaussians 
of equal variance. Then, V1=Z1+Z2 and V2=Z1-Z2 are independent and 
Gaussian. The following give rise to the same distribution over (X1, X2): 

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” submitted.



Bad News 
The lhs is a LiNGAM with no confounders, but the rhs model is a mess: it is 
unfaithful (because of U2) and has a Gaussian noise term (Z2) and Gaussian 
confounder (Z1).  

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” submitted.



Bad News 
But we can approximate the rhs by a sequence of LiNGAMS. Let A1,A2 be 
independent, non-Gaussian. Let J1,n = Z1+ (1/n)*A2 and J2,n = Z2 + (1/n)*A2. 
Then (X1,n, X2,n) ⇒ (X1,X2).

Genin, Konstantin (2021). “Statistical Undecidability in Linear Non-Gaussian Models in the Presence of Latent Confounders,” submitted.



A Way Out? 
Say that a r.v. X has no Gaussian component  if it cannot be written as 
X = Y + Z, where Y,Z are independent and Z is Gaussian.

Conjecture: We can banish flipping in the potentially confounded case by 
slightly strengthening the LiNGAM assumptions to rule out noise terms with 
Gaussian components.


